ترغب بنشر مسار تعليمي؟ اضغط هنا

Life Beyond the Solar System: Remotely Detectable Biosignatures

85   0   0.0 ( 0 )
 نشر من قبل Shawn Domagal-Goldman
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the first time in human history, we will soon be able to apply the scientific method to the question Are We Alone? The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search for life beyond our Solar System through direct observation of extrasolar planets. This endeavor will occur alongside searches for habitable environments and signs of life within our Solar System. While the searches are thematically related and will inform each other, they will require separate observational techniques. The search for life on exoplanets holds potential through the great diversity of worlds to be explored beyond our Solar System. However, there are also unique challenges related to the relatively limited data this search will obtain on any individual world. This white paper reviews the scientific communitys ability to use data from future telescopes to search for life on exoplanets. This material summarizes products from the Exoplanet Biosignatures Workshop Without Walls (EBWWW). The EBWWW was constituted by a series of online and in person activities, with participation from the international exoplanet and astrobiology communities, to assess state of the science and future research needs for the remote detection of life on planets outside our Solar System.

قيم البحث

اقرأ أيضاً

In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseo us products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earths biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a state-of-the-art overview of our current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well-known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required for a given atmospheric signature. We focus particularly on advances made since the seminal review by Des Marais et al. (2002). The purpose of this work is not to propose new biosignatures strategies, a goal left to companion papers in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward.
The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA s cience disciplines (planetary science, heliophysics, Earth science) with ongoing exoplanet research in astrophysics. The NASA Nexus for Exoplanet System Science (NExSS) provides a forum for scientists to collaborate across disciplines to accelerate progress in the search for life elsewhere. Here we describe recent developments in these other disciplines, with a focus on exoplanet properties and environments, and the prospects for future progress that will be achieved by integrating emerging knowledge from astrophysics with insights from these fields.
The search of life in the Universe is a fundamental problem of astrobiology and a major priority for NASA. A key area of major progress since the NASA Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet discovery phase to a phase o f characterization and modeling of the physics and chemistry of exoplanetary atmospheres, and the development of observational strategies for the search for life in the Universe by combining expertise from four NASA science disciplines including heliophysics, astrophysics, planetary science and Earth science. The NASA Nexus for Exoplanetary System Science (NExSS) has provided an efficient environment for such interdisciplinary studies. Solar flares, coronal mass ejections and solar energetic particles produce disturbances in interplanetary space collectively referred to as space weather, which interacts with the Earth upper atmosphere and causes dramatic impact on space and ground-based technological systems. Exoplanets within close in habitable zones around M dwarfs and other active stars are exposed to extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW) effects a crucial factor of habitability. In this paper, we describe the recent developments and provide recommendations in this interdisciplinary effort with the focus on the impacts of ESW on habitability, and the prospects for future progress in searching for signs of life in the Universe as the outcome of the NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of five Life Beyond the Solar System white papers submitted by NExSS to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe.
354 - David L Clements 2018
The existence of intelligent, interstellar traveling and colonising life is a key assumption behind the Fermi Paradox. Until recently, detecting signs of life elsewhere has been so technically challenging as to seem almost impossible. However, new ob servational insights and other developments mean that signs of life elsewhere might realistically be uncovered in the next decade or two. We here review what are believed to be the basic requirements for life, the history of life on Earth, and then apply this knowledge to potential sites for life in our own Solar System. We conclude that the necessities of life - liquid water and sources of energy - are in fact quite common in the Solar System, but most potential sites are beneath the icy surfaces of gas giant moons. If this is the case elsewhere in the Galaxy, life may be quite common but, even if intelligence develops, is essentially sealed in a finite environment, unable to communicate with the outside world.
Context. Homochirality is a generic and unique property of life on Earth and is considered a universal and agnostic biosignature. Homochirality induces fractional circular polarization in the incident light that it reflects. Because this circularly p olarized light can be sensed remotely, it can be one of the most compelling candidate biosignatures in life detection missions. While there are also other sources of circular polarization, these result in spectrally flat signals with lower magnitude. Additionally, circular polarization can be a valuable tool in Earth remote sensing because the circular polarization signal directly relates to vegetation physiology. Aims. While high-quality circular polarization measurements can be obtained in the laboratory and under semi-static conditions in the field, there has been a significant gap to more realistic remote sensing conditions. Methods. In this study, we present sensitive circular spectropolarimetric measurements of various landscape elements taken from a fast-moving helicopter. Results. We demonstrate that during flight, within mere seconds of measurements, we can differentiate (S/N>5) between grass fields, forests, and abiotic urban areas. Importantly, we show that with only nonzero circular polarization as a discriminant, photosynthetic organisms can even be measured in lakes. Conclusions. Circular spectropolarimetry can be a powerful technique to detect life beyond Earth, and we emphasize the potential of utilizing circular spectropolarimetry as a remote sensing tool to characterize and monitor in detail the vegetation physiology and terrain features of Earth itself.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا