ترغب بنشر مسار تعليمي؟ اضغط هنا

Thorium Abundances in Solar Twins and Analogues: Implications for the Habitability of Extrasolar Planetary Systems

395   0   0.0 ( 0 )
 نشر من قبل Cayman Unterborn
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first investigation of Th abundances in Solar twins and analogues to understand the possible range of this radioactive element and its effect on rocky planet interior dynamics and potential habitability. The abundances of the radioactive elements Th and U are key components of a planets energy budget, making up 30% to 50% of the Earths (Korenaga 2008; All`egre et al. 2001; Schubert et al. 1980; Lyubetskaya & Korenaga 2007; The KamLAND Collaboration 2011; Huang et al. 2013). Radiogenic heat drives interior mantle convection and surface plate tectonics, which sustains a deep carbon and water cycle and thereby aides in creating Earths habitable surface. Unlike other heat sources that are dependent on the planets specific formation history, the radiogenic heat budget is directly related to the mantle concentration of these nuclides. As a refractory element, the stellar abundance of Th is faithfully reflected in the terrestrial planets concentration. We find that log eps Th varies from 59% to 251% that of Solar, suggesting extrasolar planetary systems may possess a greater energy budget with which to support surface to interior dynamics and thus increase their likelihood to be habitable compared to our Solar System.



قيم البحث

اقرأ أيضاً

We have investigated the thorium (Th) abundance in a sample of 53 thin disc solar twins covering a wide range of ages. These data provide constrains on the mantle energy budget of terrestrial planets that can be formed over the evolution of the Galax ys thin disc. We have estimated Th abundances with an average precision of 0.025,dex (in both [Th/H] and [Th/Fe]) through comprehensive spectral synthesis of a Th,II line present at 4019.1290,{AA}, using very high resolution (R,=,115,000) high quality HARPS spectra obtained at the ESO La Silla Observatory. We have confirmed that there is a large energy budget from Th decay for maintaining mantle convection inside potential rocky planets around solar twins, from the Galactic thin disc formation until now, because the pristine [Th/H]$_{rm ZAMS}$ is super-solar on average under a uniform dispersion of 0.056,dex (varying from +0.037 up to +0.138,dex based on linear fits against isochrone stellar age). Comparing to neodymium (Nd) and europium (Eu), two others neutron-capture elements, the stellar pristine abundance of Th follows Eu along the Galactic thin disc evolution, but it does not follow Nd, probably because neodymium has a significant contribution from the $s$-process (about 60,per,cent).
Star formation is spatially clustered across a range of environments, from dense stellar clusters to unbound associations. As a result, radiative or dynamical interactions with neighbouring stars disrupt (proto)planetary systems and limit their radii , leaving a lasting impact on their potential habitability. In the solar neighbourhood, we find that the vast majority of stars form in unbound associations, such that the interaction of (proto)planetary systems with neighbouring stars is limited to the densest sub-regions. However, the fraction of star formation occurring in compact clusters was considerably higher in the past, peaking at ~50% in the young Milky Way at redshift z~2. These results demonstrate that the large-scale star formation environment affects the demographics of planetary systems and the occupation of the habitable zone. We show that planet formation is governed by multi-scale physics, in which Mpc-scale events such as galaxy mergers affect the AU-scale properties of (proto)planetary systems.
The proportions of oxygen, carbon and major rock-forming elements (e.g. Mg, Fe, Si) determine a planets dominant mineralogy. Variation in a planets mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. T hrough thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate the oxidation potential of C is above that of Fe at all pressures and temperatures indicative of 0.1 - 2 Earth-mass planets. This means that for a planet with (Mg+2Si+Fe+2C)/O > 1, excess C in the mantle will be in the form of diamond. We model the general dynamic state of planets as a function of interior temperature, carbon composition, and size, showing that above a critical threshold of $sim$3 atom% C, limited to no mantle convection will be present assuming an Earth-like geotherm. We assert then that in the C-(Mg+2Si+Fe)-O system, only a very small compositional range produce habitable planets. Planets outside of this habitable range will be dynamically sluggish or stagnant, thus having limited carbon or water cycles leading to surface conditions inhospitable to life as we know it.
We present 63 Solar analogues and twins for which high S/N archival data are available for the HARPS high resolution spectrograph at the ESO 3.6m telescope. We perform a differential analysis of these stellar spectra relative to the Solar spectrum, s imilar to previous work using ESO 2.2m/FEROS data, and expand our analysis by introducing a new method to test the temperature and metallicity calibration of Sun-like stars in the Geneva-Copenhagen-Survey (GCS). The HARPS data are significantly better than the FEROS data, with improvements in S/N, spectral resolution, and number of lines we can analyse. We confirm the offsets to the photometric scale found in our FEROS study. We confirm 3 Solar twins found in the FEROS data as Solar twins in the HARPS data, as well as identify 6 new twins.
Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar c atalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims. This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48,000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods. The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results. We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions. Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا