ﻻ يوجد ملخص باللغة العربية
Despite excellent progress in recent years, mode collapse remains a major unsolved problem in generative adversarial networks (GANs).In this paper, we present spectral regularization for GANs (SR-GANs), a new and robust method for combating the mode collapse problem in GANs. Theoretical analysis shows that the optimal solution to the discriminator has a strong relationship to the spectral distributions of the weight matrix.Therefore, we monitor the spectral distribution in the discriminator of spectral normalized GANs (SN-GANs), and discover a phenomenon which we refer to as spectral collapse, where a large number of singular values of the weight matrices drop dramatically when mode collapse occurs. We show that there are strong evidence linking mode collapse to spectral collapse; and based on this link, we set out to tackle spectral collapse as a surrogate of mode collapse. We have developed a spectral regularization method where we compensate the spectral distributions of the weight matrices to prevent them from collapsing, which in turn successfully prevents mode collapse in GANs. We provide theoretical explanations for why SR-GANs are more stable and can provide better performances than SN-GANs. We also present extensive experimental results and analysis to show that SR-GANs not only always outperform SN-GANs but also always succeed in combating mode collapse where SN-GANs fail. The code is available at https://github.com/max-liu-112/SRGANs-Spectral-Regularization-GANs-.
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion. While they were successfully applied to many problems, training a GAN is a notoriously challenging task
This work builds the connection between the regularity theory of optimal transportation map, Monge-Amp`{e}re equation and GANs, which gives a theoretic understanding of the major drawbacks of GANs: convergence difficulty and mode collapse. Accordin
We present a framework to understand GAN training as alternating density ratio estimation and approximate divergence minimization. This provides an interpretation for the mismatched GAN generator and discriminator objectives often used in practice, a
Deep generative models provide powerful tools for distributions over complicated manifolds, such as those of natural images. But many of these methods, including generative adversarial networks (GANs), can be difficult to train, in part because they
Generative adversarial network (GAN) is a minimax game between a generator mimicking the true model and a discriminator distinguishing the samples produced by the generator from the real training samples. Given an unconstrained discriminator able to