ﻻ يوجد ملخص باللغة العربية
Generative adversarial network (GAN) is a minimax game between a generator mimicking the true model and a discriminator distinguishing the samples produced by the generator from the real training samples. Given an unconstrained discriminator able to approximate any function, this game reduces to finding the generative model minimizing a divergence measure, e.g. the Jensen-Shannon (JS) divergence, to the data distribution. However, in practice the discriminator is constrained to be in a smaller class $mathcal{F}$ such as neural nets. Then, a natural question is how the divergence minimization interpretation changes as we constrain $mathcal{F}$. In this work, we address this question by developing a convex duality framework for analyzing GANs. For a convex set $mathcal{F}$, this duality framework interprets the original GAN formulation as finding the generative model with minimum JS-divergence to the distributions penalized to match the moments of the data distribution, with the moments specified by the discriminators in $mathcal{F}$. We show that this interpretation more generally holds for f-GAN and Wasserstein GAN. As a byproduct, we apply the duality framework to a hybrid of f-divergence and Wasserstein distance. Unlike the f-divergence, we prove that the proposed hybrid divergence changes continuously with the generative model, which suggests regularizing the discriminators Lipschitz constant in f-GAN and vanilla GAN. We numerically evaluate the power of the suggested regularization schemes for improving GANs training performance.
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the rang from notions of group fairness to strong individual fa
Which Generative Adversarial Networks (GANs) generates the most plausible images? has been a frequently asked question among researchers. To address this problem, we first propose an emph{incomplete} U-statistics estimate of maximum mean discrepancy
We present a framework to understand GAN training as alternating density ratio estimation and approximate divergence minimization. This provides an interpretation for the mismatched GAN generator and discriminator objectives often used in practice, a
Generative Adversarial Networks (GANs) have shown remarkable results in modeling complex distributions, but their evaluation remains an unsettled issue. Evaluations are essential for: (i) relative assessment of different models and (ii) monitoring th
Despite excellent progress in recent years, mode collapse remains a major unsolved problem in generative adversarial networks (GANs).In this paper, we present spectral regularization for GANs (SR-GANs), a new and robust method for combating the mode