ﻻ يوجد ملخص باللغة العربية
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. In this work, we propose a data augmentation method with atomic templates for SLU, which involves minimum human efforts. The atomic templates produce exemplars for fine-grained constituents of semantic representations. We propose an encoder-decoder model to generate the whole utterance from atomic exemplars. Moreover, the generator could be transferred from source domains to help a new domain which has little data. Experimental results show that our method achieves significant improvements on DSTC 2&3 dataset which is a domain adaptation setting of SLU.
Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models s
In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequen
Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinat
Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languag
End-to-end (E2E) spoken language understanding (SLU) systems predict utterance semantics directly from speech using a single model. Previous work in this area has focused on targeted tasks in fixed domains, where the output semantic structure is assu