ﻻ يوجد ملخص باللغة العربية
Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models such as variational autoencoder (VAE), have shown promising results in regards to generating plausible and natural sentences. In this paper, we propose a novel generative architecture which leverages the generative power of latent variable models to jointly synthesize fully annotated utterances. Our experiments show that existing SLU models trained on the additional synthetic examples achieve performance gains. Our approach not only helps alleviate the data scarcity issue in the SLU task for many datasets but also indiscriminately improves language understanding performances for various SLU models, supported by extensive experiments and rigorous statistical testing.
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. I
Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired informat
In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequen
Spoken language understanding (SLU) acts as a critical component in goal-oriented dialog systems. It typically involves identifying the speakers intent and extracting semantic slots from user utterances, which are known as intent detection (ID) and s
Spoken language understanding (SLU) systems can be trained on two types of labelled data: aligned or unaligned. Unaligned data do not require word by word annotation and is easier to be obtained. In the paper, we focus on spoken language understandin