ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards AoI-aware Smart IoT Systems

151   0   0.0 ( 0 )
 نشر من قبل Hasan Burhan Beytur
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated significant understanding of how various algorithms perform in terms of this metric on various system models and networking scenarios. In this paper, by the help of the theoretical results, we analyzed the AoI behavior on real-life networks, using our two test-beds, addressing IoT networks and regular computers. Excessive number of AoI measurements are provided for variations of transport protocols such as TCP, UDP and web-socket, on wired and wireless links. Practical issues such as synchronization and selection of hardware along with transport protocol, and their effects on AoI are discussed. The results provide insight toward application and transport layer mechanisms for optimizing AoI in real-life networks.

قيم البحث

اقرأ أيضاً

Due to flexibility, autonomy and low operational cost, unmanned aerial vehicles (UAVs), as fixed aerial base stations, are increasingly being used as textit{relays} to collect time-sensitive information (i.e., status updates) from IoT devices and del iver it to the nearby terrestrial base station (TBS), where the information gets processed. In order to ensure timely delivery of information to the TBS (from all IoT devices), optimal scheduling of time-sensitive information over two hop UAV-relayed IoT networks (i.e., IoT device to the UAV [hop 1], and UAV to the TBS [hop 2]) becomes a critical challenge. To address this, we propose scheduling policies for Age of Information (AoI) minimization in such two-hop UAV-relayed IoT networks. To this end, we present a low-complexity MAF-MAD scheduler, that employs Maximum AoI First (MAF) policy for sampling of IoT devices at UAV (hop 1) and Maximum AoI Difference (MAD) policy for updating sampled packets from UAV to the TBS (hop 2). We show that MAF-MAD is the optimal scheduler under ideal conditions, i.e., error-free channels and generate-at-will traffic generation at IoT devices. On the contrary, for realistic conditions, we propose a Deep-Q-Networks (DQN) based scheduler. Our simulation results show that DQN-based scheduler outperforms MAF-MAD scheduler and three other baseline schedulers, i.e., Maximal AoI First (MAF), Round Robin (RR) and Random, employed at both hops under general conditions when the network is small (with 10s of IoT devices). However, it does not scale well with network size whereas MAF-MAD outperforms all other schedulers under all considered scenarios for larger networks.
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures. In this work, we formulate a problem of autonomous maintenance in IoT networks as a Partially Obse rvable Markov Decision Process. Subsequently, we utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed. To avoid wasting the scarce resources of IoT networks we utilize the Age of Information (AoI) metric as a reward signal for the training of the smart agents. AoI captures the freshness of the sensory data which are transmitted by the IoT sensors as part of their normal service provision. Numerical results indicate that AoI integrates enough information about the past and present states of the system to be successfully used in the training of smart agents for the autonomous maintenance of the network.
With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time dee p co-inference framework with IoT synergy was introduced. However, the distribution of Deep Neural Networks (DNN) has drawn attention to the privacy protection of sensitive data. In this context, various threats have been presented, including black-box attacks, where a malicious participant can accurately recover an arbitrary input fed into his device. In this paper, we introduce a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead. First, we examine the characteristics of the model structure that make it susceptible to privacy threats. We found that the more we divide the model feature maps into a high number of devices, the better we hide proprieties of the original image. We formulate such a methodology, namely DistPrivacy, as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy level of the data, and the limited-resources of IoT participants. Due to the NP-hardness of the problem, we introduce an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.
Edge computing is an emerging solution to support the future Internet of Things (IoT) applications that are delay-sensitive, processing-intensive or that require closer intelligence. Machine intelligence and data-driven approaches are envisioned to b uild future Edge-IoT systems that satisfy IoT devices demands for edge resources. However, significant challenges and technical barriers exist which complicate the resource management for such Edge-IoT systems. IoT devices running various applications can demonstrate a wide range of behaviors in the devices resource demand that are extremely difficult to manage. In addition, the management of multidimensional resources fairly and efficiently by the edge in such a setting is a challenging task. In this paper, we develop a novel data-driven resource management framework named BEHAVE that intelligently and fairly allocates edge resources to heterogeneous IoT devices with consideration of their behavior of resource demand (BRD). BEHAVE aims to holistically address the management technical barriers by: 1) building an efficient scheme for modeling and assessment of the BRD of IoT devices based on their resource requests and resource usage; 2) expanding a new Rational, Fair, and Truthful Resource Allocation (RFTA) model that binds the devices BRD and resource allocation to achieve fair allocation and encourage truthfulness in resource demand; and 3) developing an enhanced deep reinforcement learning (EDRL) scheme to achieve the RFTA goals. The evaluation results demonstrate BEHAVEs capability to analyze the IoT devices BRD and adjust its resource management policy accordingly.
The number of connected Internet of Things (IoT) devices within cyber-physical infrastructure systems grows at an increasing rate. This poses significant device management and security challenges to current IoT networks. Among several approaches to c ope with these challenges, data-based methods rooted in deep learning (DL) are receiving an increased interest. In this paper, motivated by the upcoming surge of 5G IoT connectivity in industrial environments, we propose to integrate a DL-based anomaly detection (AD) as a service into the 3GPP mobile cellular IoT architecture. The proposed architecture embeds autoencoder based anomaly detection modules both at the IoT devices (ADM-EDGE) and in the mobile core network (ADM-FOG), thereby balancing between the system responsiveness and accuracy. We design, integrate, demonstrate and evaluate a testbed that implements the above service in a real-world deployment integrated within the 3GPP Narrow-Band IoT (NB-IoT) mobile operator network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا