ﻻ يوجد ملخص باللغة العربية
Edge computing is an emerging solution to support the future Internet of Things (IoT) applications that are delay-sensitive, processing-intensive or that require closer intelligence. Machine intelligence and data-driven approaches are envisioned to build future Edge-IoT systems that satisfy IoT devices demands for edge resources. However, significant challenges and technical barriers exist which complicate the resource management for such Edge-IoT systems. IoT devices running various applications can demonstrate a wide range of behaviors in the devices resource demand that are extremely difficult to manage. In addition, the management of multidimensional resources fairly and efficiently by the edge in such a setting is a challenging task. In this paper, we develop a novel data-driven resource management framework named BEHAVE that intelligently and fairly allocates edge resources to heterogeneous IoT devices with consideration of their behavior of resource demand (BRD). BEHAVE aims to holistically address the management technical barriers by: 1) building an efficient scheme for modeling and assessment of the BRD of IoT devices based on their resource requests and resource usage; 2) expanding a new Rational, Fair, and Truthful Resource Allocation (RFTA) model that binds the devices BRD and resource allocation to achieve fair allocation and encourage truthfulness in resource demand; and 3) developing an enhanced deep reinforcement learning (EDRL) scheme to achieve the RFTA goals. The evaluation results demonstrate BEHAVEs capability to analyze the IoT devices BRD and adjust its resource management policy accordingly.
In Federated Learning (FL), a global statistical model is developed by encouraging mobile users to perform the model training on their local data and aggregating the output local model parameters in an iterative manner. However, due to limited energy
Integrating Internet of Things (IoT) and edge computing for Edge-IoT systems, converged with machine intelligence, has the potentials of enabling a wide range of applications in smart homes, factories and cities. Edge-IoT can connect many diverse dev
Internet of Things (IoT) is an Internet-based environment of connected devices and applications. IoT creates an environment where physical devices and sensors are flawlessly combined into information nodes to deliver innovative and smart services for
Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated s
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading