ﻻ يوجد ملخص باللغة العربية
In the past decade superconducting nanowire single photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs are coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but are yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time-resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multi-mode fiber coupled detectors, and show how it can be addressed. We fabricated high performance 20, 25 and 50{mu}m diameter detectors targeted for visible, near infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We simultaneously achieved system efficiency >80% and time resolution <20 ps and made large detectors that offer outstanding performances.
We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPD
We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection effic
Superconducting nanowire single-photon detectors are set apart from other photon counting technologies above all else by their extremely high speed, with few-ten-ps timing resolution, and recovery times $tau_Rlesssim$10 ns after a detection event. In