ﻻ يوجد ملخص باللغة العربية
We give a new proof of the Baum--Connes conjecture with coefficients for any second countable, locally compact topological group that acts properly and cocompactly on a finite-dimensional CAT(0)-cubical space with bounded geometry. The proof uses the Julg-Valette complex of a CAT(0)-cubical space introduced by the first three authors, and the direct splitting method in Kasparov theory developed by the last author.
In the 1980s Pierre Julg and Alain Valette, and also Tadeusz Pytlik and Ryszard Szwarc, constructed and studied a certain Fredholm operator associated to a simplicial tree. The operator can be defined in at least two ways: from a combinatorial flow o
We introduce the notion of proper Kasparov cycles for Kasparovs G-equivariant KK-theory for a general locally compact, second countable topological group G. We show that for any proper Kasparov cycle, its induced map on K-theory factors through the l
Let $left( 1to N_nto G_nto Q_nto 1 right)_{nin mathbb{N}}$ be a sequence of extensions of finitely generated groups with uniformly finite generating subsets. We show that if the sequence $left( N_n right)_{nin mathbb{N}} $ with the induced metric fro
We give a decomposition of the equivariant Kasparov category for discrete quantum group with torsions. As an outcome, we show that the crossed product by a discrete quantum group in a certain class preserves the UCT. We then show that quasidiagonalit
We introduce a new method for studying the Baum-Connes conjecture, which we call the direct splitting method. The method can simplify and clarify proofs of some of the known cases of the conjecture. In a separate paper, with J. Brodzki, E. Guentner a