ترغب بنشر مسار تعليمي؟ اضغط هنا

A Differential Complex for CAT(0) Cubical Spaces

86   0   0.0 ( 0 )
 نشر من قبل Jacek Brodzki
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the 1980s Pierre Julg and Alain Valette, and also Tadeusz Pytlik and Ryszard Szwarc, constructed and studied a certain Fredholm operator associated to a simplicial tree. The operator can be defined in at least two ways: from a combinatorial flow on the tree, similar to the flows in Formans discrete Morse theory, or from the theory of unitary operator-valued coccyges. There are applications of the theory surrounding the operator to C*-algebra K-theory, to the theory of completely bounded representations of groups that act on trees, and to the Selberg principle in the representation theory of p-adic groups. The main aim of this paper is to extend the constructions of Julg and Valette, and Pytlik and Szwarc, to CAT(0) cubical spaces. A secondary aim is to illustrate the utility of the extended construction by developing an application to operator K-theory and giving a new proof of K-amenability for groups that act properly on bounded-geometry CAT(0)-cubical spaces.



قيم البحث

اقرأ أيضاً

We give a new proof of the Baum--Connes conjecture with coefficients for any second countable, locally compact topological group that acts properly and cocompactly on a finite-dimensional CAT(0)-cubical space with bounded geometry. The proof uses the Julg-Valette complex of a CAT(0)-cubical space introduced by the first three authors, and the direct splitting method in Kasparov theory developed by the last author.
We show that the class of CAT(0) spaces is closed under suitable conformal changes. In particular, any CAT(0) space admits a large variety of non-trivial deformations.
We analyze weak convergence on $CAT(0)$ spaces and the existence and properties of corresponding weak topologies.
Mahan Mitra (Mj) proved Cannon--Thurston maps exist for normal hyperbolic subgroups of a hyperbolic group. We prove that Cannon--Thurston maps do not exist for infinite normal hyperbolic subgroups of non-hyperbolic CAT(0) groups with isolated flats w ith respect to the visual boundaries. We also show Cannon--Thurston maps do not exist for infinite infinite-index normal CAT(0) subgroups with isolated flats in non-hyperbolic CAT(0) groups with isolated flats. We obtain a structure theorem for the normal subgroups in these settings and show that outer automorphism groups of hyperbolic groups have no purely atoroidal $mathbb{Z}^2$ subgroups.
To every Gromov hyperbolic space X one can associate a space at infinity called the Gromov boundary of X. Gromov showed that quasi-isometries of hyperbolic metric spaces induce homeomorphisms on their boundaries, thus giving rise to a well-defined no tion of the boundary of a hyperbolic group. Croke and Kleiner showed that the visual boundary of non-positively curved (CAT(0)) groups is not well-defined, since quasi-isometric CAT(0) spaces can have non-homeomorphic boundaries. For any sublinear function $kappa$, we consider a subset of the visual boundary called the $kappa$-Morse boundary and show that it is QI-invariant and metrizable. This is to say, the $kappa$-Morse boundary of a CAT(0) group is well-defined. In the case of Right-angled Artin groups, it is shown in the Appendix that the Poisson boundary of random walks is naturally identified with the $sqrt{t log t}$--boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا