ﻻ يوجد ملخص باللغة العربية
Let $left( 1to N_nto G_nto Q_nto 1 right)_{nin mathbb{N}}$ be a sequence of extensions of finitely generated groups with uniformly finite generating subsets. We show that if the sequence $left( N_n right)_{nin mathbb{N}} $ with the induced metric from the word metrics of $left( G_n right)_{nin mathbb{N}} $ has property A, and the sequence $left( Q_n right)_{nin mathbb{N}} $ with the quotient metrics coarsely embeds into Hilbert space, then the coarse Baum-Connes conjecture holds for the sequence $left( G_n right)_{nin mathbb{N}}$, which may not admit a coarse embedding into Hilbert space. It follows that the coarse Baum-Connes conjecture holds for the relative expanders and group extensions exhibited by G. Arzhantseva and R. Tessera, and special box spaces of free groups discovered by T. Delabie and A. Khukhro, which do not coarsely embed into Hilbert space, yet do not contain a weakly embedded expander. This in particular solves an open problem raised by G. Arzhantseva and R. Tessera cite{Arzhantseva-Tessera 2015}.
We introduce the notion of proper Kasparov cycles for Kasparovs G-equivariant KK-theory for a general locally compact, second countable topological group G. We show that for any proper Kasparov cycle, its induced map on K-theory factors through the l
We give a new proof of the Baum--Connes conjecture with coefficients for any second countable, locally compact topological group that acts properly and cocompactly on a finite-dimensional CAT(0)-cubical space with bounded geometry. The proof uses the
We introduce a new method for studying the Baum-Connes conjecture, which we call the direct splitting method. The method can simplify and clarify proofs of some of the known cases of the conjecture. In a separate paper, with J. Brodzki, E. Guentner a
We give a decomposition of the equivariant Kasparov category for discrete quantum group with torsions. As an outcome, we show that the crossed product by a discrete quantum group in a certain class preserves the UCT. We then show that quasidiagonalit
We define and study an analogue of the Baum-Connes assembly map for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. Our starting point is the deformation picture of the Baum-Conne