ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spectra of Gravitational Atoms

99   0   0.0 ( 0 )
 نشر من قبل Horng Sheng Chia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the quasi-bound state spectra of ultralight scalar and vector fields around rotating black holes. These spectra are determined by the gravitational fine structure constant $alpha$, which is the ratio of the size of the black hole to the Compton wavelength of the field. When $alpha$ is small, the energy eigenvalues and instability rates can be computed analytically. Since the solutions vary rapidly near the black hole horizon, ordinary perturbative approximations fail and we must use matched asymptotic expansions to determine the spectra. Our analytical treatment relies on the separability of the equations of motion, and is therefore only applicable to the scalar field and the electric modes of the vector field. However, for slowly-rotating black holes, the equations for the magnetic modes can be written in a separable form, which we exploit to derive their energy eigenvalues and conjecture an analytic form for their instability rates. To check our conjecture, and to extend all results to large values of $alpha$, we solve for the spectra numerically. We explain how to accurately and efficiently compute these spectra, without relying on separability. This allows us to obtain reliable results for any $alpha gtrsim 0.001$ and black holes of arbitrary spin. Our results provide an essential input to the phenomenology of boson clouds around black holes, especially when these are part of binary systems.

قيم البحث

اقرأ أيضاً

If ultralight bosonic fields exist in Nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronised gravitational atoms (SGAs). The self-gravity of thes e same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yields a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, $sim 18%$ of the final systems energy and $sim 50%$ of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.
We study the imprints of new ultralight particles on the gravitational-wave signals emitted by binary black holes. Superradiant instabilities may create large clouds of scalar or vector fields around rotating black holes. The presence of a binary com panion then induces transitions between different states of the cloud, which become resonantly enhanced when the orbital frequency matches the energy gap between the states. We find that the time dependence of the orbit significantly impacts the clouds dynamics during a transition. Following an analogy with particle colliders, we introduce an S-matrix formalism to describe the evolution through multiple resonances. We show that the state of the cloud, as it approaches the merger, carries vital information about its spectrum via time-dependent finite-size effects. Moreover, due to the transfer of energy and angular momentum between the cloud and the orbit, a dephasing of the gravitational-wave signal can occur which is correlated with the positions of the resonances. Notably, for intermediate and extreme mass ratio inspirals, long-lived floating orbits are possible, as well as kicks that yield large eccentricities. Observing these effects, through the precise reconstruction of waveforms, has the potential to unravel the internal structure of the boson clouds, ultimately probing the masses and spins of new particles.
63 - J. Blumlein , A. Maier , 2019
We compute the static contribution to the gravitational interaction potential of two point masses in the velocity-independent five-loop (and 5th post-Newtonian) approximation to the harmonic coordinates effective action in a direct calculation. The c omputation is performed using effective field methods based on Feynman diagrams in momentum-space in $d = 3 - 2varepsilon$ space dimensions. We also reproduce the previous results including the 4th post-Newtonian order.
One of the biggest puzzles in modern cosmology is the observed baryon asymmetry in the universe. In current models of baryogenesis gravity plays a secondary role, although the process is believed to have happened in the early universe, under the infl uence of an intense gravitational field. In the present work we resume Sakharovs original program for baryogenesis and propose a central role for gravity in the process. This is achieved through a non-minimal coupling (NMC) between the gravitational field and both the strong interaction field and the quark fields. When in action, the present mechanism leads to baryon number non-conservation and CP violation. Moreover, the NMC induces reduced effective quark masses, which favours a first order QCD phase transition. As a consequence, a baryon asymmetry can be attained in the transition from the quark epoch to the hadron epoch.
In this paper we construct an effective field theory (EFT) that describes long wavelength gravitational radiation from compact systems. To leading order, this EFT consists of the multipole expansion, which we describe in terms of a diffeomorphism inv ariant point particle Lagrangian. The EFT also systematically captures post-Minkowskian corrections to the multipole expansion due to non-linear terms in general relativity. Specifically, we compute long distance corrections from the coupling of the (mass) monopole moment to the quadrupole moment, including up to two mass insertions. Along the way, we encounter both logarithmic short distance (UV) and long wavelength (IR) divergences. We show that the UV divergences can be (1) absorbed into a renormalization of the multipole moments and (2) resummed via the renormalization group. The IR singularities are shown to cancel from properly defined physical observables. As a concrete example of the formalism, we use this EFT to reproduce a number of post-Newtonian corrections to the gravitational wave energy flux from non-relativistic binaries, including long distance effects up to 3PN ($v^6$) order. Our results verify that the factorization of scales proposed in the NRGR framework of Goldberger and Rothstein is consistent up to order 3PN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا