ﻻ يوجد ملخص باللغة العربية
We study the imprints of new ultralight particles on the gravitational-wave signals emitted by binary black holes. Superradiant instabilities may create large clouds of scalar or vector fields around rotating black holes. The presence of a binary companion then induces transitions between different states of the cloud, which become resonantly enhanced when the orbital frequency matches the energy gap between the states. We find that the time dependence of the orbit significantly impacts the clouds dynamics during a transition. Following an analogy with particle colliders, we introduce an S-matrix formalism to describe the evolution through multiple resonances. We show that the state of the cloud, as it approaches the merger, carries vital information about its spectrum via time-dependent finite-size effects. Moreover, due to the transfer of energy and angular momentum between the cloud and the orbit, a dephasing of the gravitational-wave signal can occur which is correlated with the positions of the resonances. Notably, for intermediate and extreme mass ratio inspirals, long-lived floating orbits are possible, as well as kicks that yield large eccentricities. Observing these effects, through the precise reconstruction of waveforms, has the potential to unravel the internal structure of the boson clouds, ultimately probing the masses and spins of new particles.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phe
We compute the quasi-bound state spectra of ultralight scalar and vector fields around rotating black holes. These spectra are determined by the gravitational fine structure constant $alpha$, which is the ratio of the size of the black hole to the Co
In this paper we construct an effective field theory (EFT) that describes long wavelength gravitational radiation from compact systems. To leading order, this EFT consists of the multipole expansion, which we describe in terms of a diffeomorphism inv
In order to detect high frequency gravitational waves, we need a new detection method. In this paper, we develop a formalism for a gravitational wave detector using magnons in a cavity. Using Fermi normal coordinates and taking the non-relativistic l
Understanding the role of higher derivatives is probably one of the most relevant questions in quantum gravity theory. Already at the semiclassical level, when gravity is a classical background for quantum matter fields, the action of gravity should