ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronised gravitational atoms from mergers of bosonic stars

91   0   0.0 ( 0 )
 نشر من قبل Carlos A. R. Herdeiro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If ultralight bosonic fields exist in Nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronised gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yields a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, $sim 18%$ of the final systems energy and $sim 50%$ of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.

قيم البحث

اقرأ أيضاً

We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the bin aries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black-hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
We perform numerical evolutions of the fully non-linear Einstein-(complex, massive)Klein-Gordon and Einstein-(complex)Proca systems, to assess the formation and stability of spinning bosonic stars. In the scalar/vector case these are known as boson/P roca stars. Firstly, we consider the formation scenario. Starting with constraint-obeying initial data, describing a dilute, axisymmetric cloud of spinning scalar/Proca field, gravitational collapse towards a spinning star occurs, via gravitational cooling. In the scalar case the formation is transient, even for a non-perturbed initial cloud; a non-axisymmetric instability always develops ejecting all the angular momentum from the scalar star. In the Proca case, by contrast, no instability is observed and the evolutions are compatible with the formation of a spinning Proca star. Secondly, we address the stability of an existing star, a stationary solution of the field equations. In the scalar case, a non-axisymmetric perturbation develops collapsing the star to a spinning black hole. No such instability is found in the Proca case, where the star survives large amplitude perturbations; moreover, some excited Proca stars decay to, and remain as, fundamental states. Our analysis suggests bosonic stars have different stability properties in the scalar/vector case, which we tentatively relate to their toroidal/spheroidal morphology. A parallelism with instabilities of spinning fluid stars is briefly discussed.
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into ele ctromagnetic waves and show how this process evades the well-known prohibition against particle production from gravitational waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromagnetic counterpart radiation coming from gravitational waves produced by neutron star oscillations. The detection of electromagnetic counterpart radiation would provide an indirect way of observing gravitational radiation with future spacecraft missions, especially lunar orbiting probes.
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and hence on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of quasi-universality found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a disk. Such a configuration is significantly different from the $j-{rm constant}$ differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from $simeq 0.03,M_{odot}$ in the case of high-mass binaries with stiff equations of state, up to $simeq 0.2,M_{odot}$ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve t his riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا