ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonholonomic Noetherian symmetries and integrals of the Routh sphere and Chaplygin ball

49   0   0.0 ( 0 )
 نشر من قبل Miguel D. Bustamante
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of a spherical body with a non-uniform mass distribution rolling on a plane were discussed by Sergey Chaplygin, whose 150th anniversary we celebrate this year. The Chaplygin top is a non-integrable system, with a colourful range of interesting motions. A special case of this system was studied by Edward Routh, who showed that it is integrable. The Routh sphere has centre of mass offset from the geometric centre, but it has an axis of symmetry through both these points, and equal moments of inertia about all axes orthogonal to the symmetry axis. There are three constants of motion: the total energy and two quantities involving the angular momenta. It is straightforward to demonstrate that these quantities, known as the Jellett and Routh constants, are integrals of the motion. However, their physical significance has not been fully understood. In this paper, we show how the integrals of the Routh sphere arise from Emmy Noethers invariance identity. We derive expressions for the infinitesimal symmetry transformations associated with these constants. We find the finite version of these symmetries and provide their geometrical interpretation. As a further demonstration of the power and utility of this method, we find the Noether symmetries and corresponding Noether integrals for a system introduced recently: the Chaplygin ball on a rotating turntable, confirming that the known integrals are directly obtained from Noethers theorem.



قيم البحث

اقرأ أيضاً

170 - Mykola Dedushenko 2018
We review some aspects of the cutting and gluing law in local quantum field theory. In particular, we emphasize the description of gluing by a path integral over a space of polarized boundary conditions, which are given by leaves of some Lagrangian f oliation in the phase space. We think of this path integral as a non-local $(d-1)$-dimensional gluing theory associated to the parent local $d$-dimensional theory. We describe various properties of this procedure and spell out conditions under which symmetries of the parent theory lead to symmetries of the gluing theory. The purpose of this paper is to set up a playground for the companion paper where these techniques are applied to obtain new results in supersymmetric theories.
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the table i s approximated in one period by four cubic polynomials. Results obtained for this model are used to elucidate dynamics of the standard model of bouncing ball with sinusoidal motion of the limiter.
A Swinging Atwood Machine (SAM) is built and some experimental results concerning its dynamic behaviour are presented. Experiments clearly show that pulleys play a role in the motion of the pendulum, since they can rotate and have non-negligible radi i and masses. Equations of motion must therefore take into account the inertial momentum of the pulleys, as well as the winding of the rope around them. Their influence is compared to previous studies. A preliminary discussion of the role of dissipation is included. The theoretical behaviour of the system with pulleys is illustrated numerically, and the relevance of different parameters is highlighted. Finally, the integrability of the dynamic system is studied, the main result being that the Machine with pulleys is non-integrable. The status of the results on integrability of the pulley-less Machine is also recalled.
The Symmetries of Feynman Integrals (SFI) method is extended for the first time to incorporate an irreducible numerator. This is done in the context of the so-called vacuum and propagator seagull diagrams, which have 3 and 2 loops, respectively, and both have a single irreducible numerator. For this purpose, an extended version of SFI (xSFI) is developed. For the seagull diagrams with general masses, the SFI equation system is found to extend by two additional equations. The first is a recursion equation in the numerator power, which has an alternative form as a differential equation for the generating function. The second equation applies only to the propagator seagull and does not involve the numerator. We solve the equation system in two cases: over the singular locus and in a certain 3 scale sector where we obtain novel closed-form evaluations and epsilon expansions, thereby extending previous results for the numerator-free case.
We study dynamics of two coupled periodically driven oscillators. Important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation are determined within the Krylov-Bogoliubov-Mitropolsky approach to get the amplitude profiles $AOmega) $. Dependence of the amplitude $A$ of nonlinear resonances on the frequency $ Omega $ is much more complicated than in the case of one Duffing oscillator and hence new nonlinear phenomena are possible. In the present paper we study metamorphoses of the function $A(Omega) $ induced by changes of the control parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا