ﻻ يوجد ملخص باللغة العربية
We use the Wide Field Camera 3 on the {sl Hubble Space Telescope} to spectrophotometrically monitor the young L7.5 companion HD~203030B. Our time series reveal photometric variability at 1.27,$mu$m and 1.39,$mu$m on time scales compatible with rotation. We find a rotation period of $7.5^{+0.6}_{-0.5}$ h: comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of $1.1pm0.3%$ (1.27,$mu$m) and $1.7pm0.4%$ (1.39,$mu$m), and a phase lag of 56$^circpm$28$^circ$ between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1--1.7$mu$m region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young vs. old T dwarfs.
We present textit{Spitzer Space Telescope} variability monitoring observations of three low-gravity L dwarfs with previous detections of variability in the near-IR, 2MASS J0045+16, 2MASS J0501-00 and 2MASS J1425-36. We detect significant, periodic va
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr
Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning $sim$10 h of observing time},
Among the greatest challenges in understanding ultra-cool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b -- a rare m
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th