ﻻ يوجد ملخص باللغة العربية
Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unlabeled data in the new scenario are utilized in a transductive learning manner. However, for each scenario, it is required to first collect enough data and then train such a domain adaptive re-id model, thus restricting their practical application. Instead, we aim to explore multiple labeled datasets to learn generalized domain-invariant representations for person re-id, which is expected universally effective for each new-coming re-id scenario. To pursue practicability in real-world systems, we collect all the person re-id datasets (20 datasets) in this field and select the three most frequently used datasets (i.e., Market1501, DukeMTMC, and MSMT17) as unseen target domains. In addition, we develop DataHunter that collects over 300K+ weak annotated images named YouTube-Human from YouTube street-view videos, which joins 17 remaining full labeled datasets to form multiple source domains. On such a large and challenging benchmark called FastHuman (~440K+ labeled images), we further propose a simple yet effective Semi-Supervised Knowledge Distillation (SSKD) framework. SSKD effectively exploits the weakly annotated data by assigning soft pseudo labels to YouTube-Human to improve models generalization ability. Experiments on several protocols verify the effectiveness of the proposed SSKD framework on domain generalizable person re-id, which is even comparable to supervised learning on the target domains. Lastly, but most importantly, we hope the proposed benchmark FastHuman could bring the next development of domain generalizable person re-id algorithms.
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which t
Domain generalization in person re-identification is a highly important meaningful and practical task in which a model trained with data from several source domains is expected to generalize well to unseen target domains. Domain adversarial learning
Person re-identification is the challenging task of identifying a person across different camera views. Training a convolutional neural network (CNN) for this task requires annotating a large dataset, and hence, it involves the time-consuming manual
Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data. This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications.
Existing person re-identification methods often have low generalizability, which is mostly due to the limited availability of large-scale labeled training data. However, labeling large-scale training data is very expensive and time-consuming. To addr