ﻻ يوجد ملخص باللغة العربية
In sequence prediction tasks like neural machine translation, training with cross-entropy loss often leads to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss function called emph{dual skew divergence} (DSD) that integrates two symmetric terms on KL divergences with a balanced weight. We empirically discovered that such a balanced weight plays a crucial role in applying the proposed DSD loss into deep models. Thus we eventually develop a controllable DSD loss for general-purpose scenarios. Our experiments indicate that switching to the DSD loss after the convergence of ML training helps models escape local optima and stimulates stable performance improvements. Our evaluations on the WMT 2014 English-German and English-French translation tasks demonstrate that the proposed loss as a general and convenient mean for NMT training indeed brings performance improvement in comparison to strong baselines.
In neural machine translation, cross entropy (CE) is the standard loss function in two training methods of auto-regressive models, i.e., teacher forcing and scheduled sampling. In this paper, we propose mixed cross entropy loss (mixed CE) as a substi
While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared.
Neural Machine Translation (NMT) systems rely on large amounts of parallel data. This is a major challenge for low-resource languages. Building on recent work on unsupervised and semi-supervised methods, we present an approach that combines zero-shot
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art result
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole do