ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-Shot Dual Machine Translation

96   0   0.0 ( 0 )
 نشر من قبل Lierni Sestorain
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural Machine Translation (NMT) systems rely on large amounts of parallel data. This is a major challenge for low-resource languages. Building on recent work on unsupervised and semi-supervised methods, we present an approach that combines zero-shot and dual learning. The latter relies on reinforcement learning, to exploit the duality of the machine translation task, and requires only monolingual data for the target language pair. Experiments show that a zero-shot dual system, trained on English-French and English-Spanish, outperforms by large margins a standard NMT system in zero-shot translation performance on Spanish-French (both directions). The zero-shot dual method approaches the performance, within 2.2 BLEU points, of a comparable supervised setting. Our method can obtain improvements also on the setting where a small amount of parallel data for the zero-shot language pair is available. Adding Russian, to extend our experiments to jointly modeling 6 zero-shot translation directions, all directions improve between 4 and 15 BLEU points, again, reaching performance near that of the supervised setting.

قيم البحث

اقرأ أيضاً

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT14 benchmarks, a single multilingual model achieves comparable performance for English$rightarrow$French and surpasses state-of-the-art results for English$rightarrow$German. Similarly, a single multilingual model surpasses state-of-the-art results for French$rightarrow$English and German$rightarrow$English on WMT14 and WMT15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.
Multilingual Neural Machine Translation (NMT) models are capable of translating between multiple source and target languages. Despite various approaches to train such models, they have difficulty with zero-shot translation: translating between langua ge pairs that were not together seen during training. In this paper we first diagnose why state-of-the-art multilingual NMT models that rely purely on parameter sharing, fail to generalize to unseen language pairs. We then propose auxiliary losses on the NMT encoder that impose representational invariance across languages. Our simple approach vastly improves zero-shot translation quality without regressing on supervised directions. For the first time, on WMT14 English-FrenchGerman, we achieve zero-shot performance that is on par with pivoting. We also demonstrate the easy scalability of our approach to multiple languages on the IWSLT 2017 shared task.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enab led one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
93 - Junwei Liao , Yu Shi , Ming Gong 2021
Recently, universal neural machine translation (NMT) with shared encoder-decoder gained good performance on zero-shot translation. Unlike universal NMT, jointly trained language-specific encoders-decoders aim to achieve universal representation acros s non-shared modules, each of which is for a language or language family. The non-shared architecture has the advantage of mitigating internal language competition, especially when the shared vocabulary and model parameters are restricted in their size. However, the performance of using multiple encoders and decoders on zero-shot translation still lags behind universal NMT. In this work, we study zero-shot translation using language-specific encoders-decoders. We propose to generalize the non-shared architecture and universal NMT by differentiating the Transformer layers between language-specific and interlingua. By selectively sharing parameters and applying cross-attentions, we explore maximizing the representation universality and realizing the best alignment of language-agnostic information. We also introduce a denoising auto-encoding (DAE) objective to jointly train the model with the translation task in a multi-task manner. Experiments on two public multilingual parallel datasets show that our proposed model achieves a competitive or better results than universal NMT and strong pivot baseline. Moreover, we experiment incrementally adding new language to the trained model by only updating the new model parameters. With this little effort, the zero-shot translation between this newly added language and existing languages achieves a comparable result with the model trained jointly from scratch on all languages.
Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme sc enario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا