ﻻ يوجد ملخص باللغة العربية
We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polynomials of the emph{rectangular} symbolic matrix in both commutative and noncommutative settings. The main results are: 1. We show an explicit $O^{*}({nchoose {downarrow k/2}})$-size ABP construction for noncommutative permanent polynomial of $ktimes n$ symbolic matrix. We obtain this via an explicit ABP construction of size $O^{*}({nchoose {downarrow k/2}})$ for $S_{n,k}^*$, noncommutative symmetrized version of the elementary symmetric polynomial $S_{n,k}$. 2. We obtain an explicit $O^{*}(2^k)$-size ABP construction for the commutative rectangular determinant polynomial of the $ktimes n$ symbolic matrix. 3. In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is $W[1]$-hard.
We construct pseudorandom generators of seed length $tilde{O}(log(n)cdot log(1/epsilon))$ that $epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with see
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polyn
We view the determinant and permanent as functions on directed weighted graphs and introduce their analogues for the undirected graphs. We prove that the task of computing the undirected determinants as well as permanents for planar graphs, whose ver
A compound determinant identity for minors of rectangular matrices is established. As an application, we derive Vandermonde type determinant formulae for classical group characters.
There is a digraph corresponding to every square matrix over $mathbb{C}$. We generate a recurrence relation using the Laplace expansion to calculate the characteristic, and permanent polynomials of a square matrix. Solving this recurrence relation, w