ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Characteristic and Permanent Polynomials of a Matrix

292   0   0.0 ( 0 )
 نشر من قبل Ranveer Singh
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a digraph corresponding to every square matrix over $mathbb{C}$. We generate a recurrence relation using the Laplace expansion to calculate the characteristic, and permanent polynomials of a square matrix. Solving this recurrence relation, we found that the characteristic, and permanent polynomials can be calculated in terms of characteristic, and permanent polynomials of some specific induced subdigraphs of blocks in the digraph, respectively. Interestingly, these induced subdigraphs are vertex-disjoint and they partition the digraph. Similar to the characteristic, and permanent polynomials; the determinant, and permanent can also be calculated. Therefore, this article provides a combinatorial meaning of these useful quantities of the matrix theory. We conclude this article with a number of open problems which may be attempted for further research in this direction.



قيم البحث

اقرأ أيضاً

We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a $1/e$ approximation factor of the objective. Our main technical contribution is an extension of Gurvitss lower bound on the coefficient of the square-free monomial of a degree $m$-homogeneous stable polynomial on $m$ variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
71 - G. Akemann , G. Vernizzi 2002
We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-N, where N is the size of the matrix. We give some explicit examples at finite-N for specific weight functions. The characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A; that is, G_n = transpose(A) A. The matrix G_n has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det(G_i) and per(G_i) (for i = 0, 1, ..., n) are factors that comprise the expected coefficients of the characteristic and permanental polynomials of G_n. We prove theorems that relate the generating functions and recursions for the traces of matrix powers, expected characteristic coefficients, expected determinants E(det(G_n)), and expected permanents E(per(G_n)) in terms of each other. Using the derived recursions, we exhibit the efficient computation of the expected determinant and expected permanent of a random Gram matrix G_n, formed according to any underlying distribution. These theoretical results may be used both to speed up numerical algorithms and to investigate the numerical properties of the expected characteristic and permanental coefficients of any matrix comprised of independently sampled columns.
The principal permanent rank characteristic sequence is a binary sequence $r_0 r_1 ldots r_n$ where $r_k = 1$ if there exists a principal square submatrix of size $k$ with nonzero permanent and $r_k = 0$ otherwise, and $r_0 = 1$ if there is a zero di agonal entry. A characterization is provided for all principal permanent rank sequences obtainable by the family of nonnegative matrices as well as the family of nonnegative symmetric matrices. Constructions for all realizable sequences are provided. Results for skew-symmetric matrices are also included.
We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polyn omials of the emph{rectangular} symbolic matrix in both commutative and noncommutative settings. The main results are: 1. We show an explicit $O^{*}({nchoose {downarrow k/2}})$-size ABP construction for noncommutative permanent polynomial of $ktimes n$ symbolic matrix. We obtain this via an explicit ABP construction of size $O^{*}({nchoose {downarrow k/2}})$ for $S_{n,k}^*$, noncommutative symmetrized version of the elementary symmetric polynomial $S_{n,k}$. 2. We obtain an explicit $O^{*}(2^k)$-size ABP construction for the commutative rectangular determinant polynomial of the $ktimes n$ symbolic matrix. 3. In contrast, we show that evaluating the rectangular noncommutative determinant over rational matrices is $W[1]$-hard.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا