ﻻ يوجد ملخص باللغة العربية
We view the determinant and permanent as functions on directed weighted graphs and introduce their analogues for the undirected graphs. We prove that the task of computing the undirected determinants as well as permanents for planar graphs, whose vertices have degree at most 4, is #P-complete. In the case of planar graphs whose vertices have degree at most 3, the computation of the undirected determinant remains #P-complete while the permanent can be reduced to the FKT algorithm, and therefore is polynomial. The undirected permanent is a Holant problem and its complexity can be deduced from the existing literature. The concept of the undirected determinant is new. Its introduction is motivated by the formal resemblance to the directed determinant, a property that may inspire generalizations of some of the many algorithms which compute the latter. For a sizable class of planar 3-regular graphs, we are able to compute the undirected determinant in polynomial time.
Let $G$ be a graph(directed or undirected) having $k$ number of blocks. A $mathcal{B}$-partition of $G$ is a partition into $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is induced subgraph of $B_i$ for $i=1,2
Let $D$ be a strongly connected digraph. The average distance $bar{sigma}(v)$ of a vertex $v$ of $D$ is the arithmetic mean of the distances from $v$ to all other vertices of $D$. The remoteness $rho(D)$ and proximity $pi(D)$ of $D$ are the maximum a
We study the arithmetic circuit complexity of some well-known family of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABP) for determinant and permanent polyn
By a tensor we mean a multidimensional array (matrix) or hypermatrix over a number field. This article aims to set an account of the studies on the permanent functions of tensors. We formulate the definitions of 1-permanent, 2-permanent, and $k$-perm
The determinants of ${pm 1}$-matrices are calculated by via the oriented hypergraphic Laplacian and summing over an incidence generalization of vertex cycle-covers. These cycle-covers are signed and partitioned into families based on their hyperedge