ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation functions in ${cal N}=2$ Supersymmetric vector matter Chern-Simons theory

99   0   0.0 ( 0 )
 نشر من قبل Pranjal Nayak
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the two, three point function of the opearators in the spin zero multiplet of ${cal N}=2$ Supersymmetric vector matter Chern-Simons theory at large $N$ and at all orders of t Hooft coupling by solving the Schwinger-Dyson equation. Schwinger-Dyson method to compute four point function becomes extremely complicated and hence we use bootstrap method to solve for four point function of scaler operator $J_0^{f}=barpsi psi$ and $J_0^{b}=barphi phi$. Interestingly, due to the fact that $langle J_0^{f}J_0^{f}J_0^{b} rangle$ is a contact term, the four point function of $ J_0^{f}$ operator looks like that of free theory up to overall coupling constant dependent factors and up to some bulk AdS contact terms. On the other hand the $J_0^{b}$ four-point function receives an additional contribution compared to the free theory expression due to the $J_0^{f}$ exchange. Interestingly, double discontinuity of this single trace operator $J_0^{f}$ vanishes and hence it only contributes to AdS-contact term.



قيم البحث

اقرأ أيضاً

352 - Wei Gu , Du Pei , Ming Zhang 2021
We investigate phases of 3d ${cal N}=2$ Chern-Simons-matter theories, extending to three dimensions the celebrated correspondence between 2d gauged Wess-Zumino-Witten (GWZW) models and non-linear sigma models (NLSMs) with geometric targets. We find t hat although the correspondence in 3d and 2d are closely related by circle compactification, an important subtlety arises in this process, changing the phase structure of the 3d theory. Namely, the effective theory obtained from the circle compactification of a phase of a 3d ${cal N}=2$ gauge theory is, in general, different from the phase of the 3d ${cal N}=2$ theory on ${mathbb R}^2times S^{1}$, which means taking phases of a 3d gauge theory does not necessarily commute with compactification. We compute the Witten index of each effective theory to check this observation. Furthermore, when the matter fields have the same non-minimal charges, the 3d ${cal N}=2$ Chern-Simons-matter theory with a proper Chern-Simons level will decompose into several identical 2d gauged linear sigma models (GLSMs) for the same target upon reduction to 2d. To illustrate this phenomenon, we investigate how vacua of the 3d gauge theory for a weighted projective space $Wmathbb{P}_{[l,cdots,l]}$ move on the field space when we change the radius of $S^{1}$.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We study a certain class of supersymmetric (SUSY) observables in 3d $mathcal{N}=2$ SUSY Chern-Simons (CS) matter theories and investigate how their exact results are related to the perturbative series with respect to coupling constants given by inver se CS levels. We show that the observables have nontrivial resurgent structures by expressing the exact results as a full transseries consisting of perturbative and non-perturbative parts. As real mass parameters are varied, we encounter Stokes phenomena at an infinite number of points, where the perturbative series becomes non-Borel-summable due to singularities on the positive real axis of the Borel plane. We also investigate the Stokes phenomena when the phase of the coupling constant is varied. For these cases, we find that the Borel ambiguities in the perturbative sector are canceled by those in nonperturbative sectors and end up with an unambiguous result which agrees with the exact result even on the Stokes lines. We also decompose the Coulomb branch localization formula, which is an integral representation for the exact results, into Lefschetz thimble contributions and study how they are related to the resurgent transseries. We interpret the non-perturbative effects appearing in the transseries as contributions of complexified SUSY solutions which formally satisfy the SUSY conditions but are not on the original path integral contour.
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfie lds to all orders in the t Hooft coupling $lambda$. Our computations are presented in $mathcal{N} = 1$ superspace and make significant use of the residual $SO(2)_R$ symmetry in order to solve for the exact four-point correlator of the scalar superfields. By taking the on-shell limit, we are able to extract the exact $2 to 2$ scattering amplitudes of bosons/fermions in the symmetric, anti-symmetric and adjoint channels of scattering. We find that the scattering amplitude of the $mathcal{N} = 3$ theory in the planar limit is tree-level exact to all orders in the t Hooft coupling $lambda$. The result is consistent with the conjectured bosonization duality and is expected to have enhanced symmetry structures such as dual superconformal symmetry and Yangian symmetry.
74 - Masazumi Honda 2017
In supersymmetric (SUSY) field theory, there exist configurations which formally satisfy SUSY conditions but are not on original path integral contour. We refer to such configurations as complexified supersymmetric solutions (CSS). In this paper we d iscuss that CSS provide important information on large order behavior of weak coupling perturbative series in SUSY field theories. We conjecture that CSS with a bosonic (fermionic) free parameter give poles (zeroes) of Borel transformation of perturbative series whose locations are uniquely determined by actions of the solutions. We demonstrate this for various SUSY observables in 3d $mathcal{N}=2$ SUSY Chern-Simons matter theories on sphere. First we construct infinite number of CSS in general 3d $mathcal{N}=2$ SUSY theory with Lagrangian where adjoint scalar in vector multiplet takes a complex value and matter fields are nontrivial. Then we compare their actions with Borel transformations of perturbative expansions by inverse Chern-Simons levels for the observables and see agreement with our conjecture. It turns out that the CSS explain all the Borel singularities for this case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا