ﻻ يوجد ملخص باللغة العربية
We advocate that a generalized Kronheimer construction of the Kahler quotient crepant resolution $mathcal{M}_zeta longrightarrow mathbb{C}^3/Gamma$ of an orbifold singularity where $Gammasubset mathrm{SU(3)}$ is a finite subgroup naturally defines the field content and interaction structure of a superconformal Chern-Simons Gauge Theory. This is supposedly the dual of an M2-brane solution of $D=11$ supergravity with $mathbb{C}timesmathcal{M}_zeta$ as transverse space. We illustrate and discuss many aspects of this of constructions emphasizing that the equation $pmb{p}wedgepmb{p}=0$ which provides the Kahler analogue of the holomorphic sector in the hyperKahler moment map equations canonically defines the structure of a universal superpotential in the CS theory. The kernel of the above equation can be described as the orbit with respect to a quiver Lie group $mathcal{G}_Gamma$ of a locus $L_Gamma subset mathrm{Hom}_Gamma(mathcal{Q}otimes R,R)$ that has also a universal definition. We discuss the relation between the coset manifold $mathcal{G}_Gamma/mathcal{F}_Gamma$, the gauge group $mathcal{F}_Gamma$ being the maximal compact subgroup of the quiver group, the moment map equations and the first Chern classes of the tautological vector bundles that are in a one-to-one correspondence with the nontrivial irreps of $Gamma$. These first Chern classes provide a basis for the cohomology group $H^2(mathcal{M}_zeta)$. We discuss the relation with conjugacy classes of $Gamma$ and provide the explicit construction of several examples emphasizing the role of a generalized McKay correspondence. The case of the ALE manifold resolution of $mathbb{C}^2/Gamma$ singularities is utilized as a comparison term and new formulae related with the complex presentation of Gibbons-Hawking metrics are exhibited.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfie
In supersymmetric (SUSY) field theory, there exist configurations which formally satisfy SUSY conditions but are not on original path integral contour. We refer to such configurations as complexified supersymmetric solutions (CSS). In this paper we d
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat c
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson l