ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complementary Information Principle of Quantum Mechanics

155   0   0.0 ( 0 )
 نشر من قبل Yunlong Xiao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The uncertainty principle bounds the uncertainties about incompatible measurements, clearly setting quantum theory apart from the classical world. Its mathematical formulation via uncertainty relations, plays an irreplaceable role in quantum technologies. However, neither the uncertainty principle nor uncertainty relations can fully describe the complementarity between quantum measurements. As an attempt to advance the efforts of complementarity in quantum theories, we formally propose a complementary information principle, significantly extending the one introduced by Heisenberg. First, we build a framework of black box testing consisting of pre- and post-testing with two incompatible measurements, introducing a rigorous mathematical expression of complementarity with definite information causality. Second, we provide majorization lower and upper bounds for the complementary information by utilizing the tool of semidefinite programming. In particular, we prove that our bounds are optimal under majorization due to the completeness of the majorization lattice. Finally, as applications to our framework, we present a general method to outer-approximating all uncertainty regions and also establish fundamental limits for all qualified joint uncertainties.


قيم البحث

اقرأ أيضاً

We review the notion of complementarity of observables in quantum mechanics, as formulated and studied by Paul Busch and his colleagues over the years. In addition, we provide further clarification on the operational meaning of the concept, and prese nt several characterisations of complementarity - some of which new - in a unified manner, as a consequence of a basic factorisation lemma for quantum effects. We work out several applications, including the canonical cases of position-momentum, position-energy, number-phase, as well as periodic observables relevant to spatial interferometry. We close the paper with some considerations of complementarity in a noisy setting, focusing especially on the case of convolutions of position and momentum, which was a recurring topic in Pauls work on operational formulation of quantum measurements and central to his philosophy of unsharp reality.
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a lower bound on the QFI which we call the sub-Quantum Fisher Information (sub-QFI). The bound can be efficiently estimated on a quantum computer for an $n$-qubit state using $2n$ qubits. The sub-QFI is based on the super-fidelity, an upper bound on Uhlmanns fidelity. We analyze the sub-QFI in the context of unitary families, where we derive several crucial properties including its geometrical interpretation. In particular, we prove that the QFI and the sub-QFI are maximized for the same optimal state, which implies that the sub-QFI is faithful to the QFI in the sense that both quantities share the same global extrema. Based on this faithfulness, the sub-QFI acts as an efficiently computable surrogate for the QFI for quantum sensing and quantum metrology applications. Finally, we provide additional meaning to the sub-QFI as a measure of coherence, asymmetry, and purity loss.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which p rovides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
We show that the main difference between classical and quantum systems can be understood in terms of information entropy. Classical systems can be considered the ones where the internal dynamics can be known with arbitrary precision while quantum sys tems can be considered the ones where the internal dynamics cannot be accessed at all. As information entropy can be used to characterize how much the state of the whole system identifies the state of its parts, classical systems can have arbitrarily small information entropy while quantum systems cannot. This provides insights that allow us to understand the analogies and differences between the two theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا