ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information aspects of approximate position measurement

88   0   0.0 ( 0 )
 نشر من قبل Alexander Holevo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which provides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.



قيم البحث

اقرأ أيضاً

With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m easurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.
The present paper is devoted to investigation of the classical capacity of infinite-dimensional quantum measurement channels. A number of usable conditions are introduced that enable us to apply previously obtained general results to specific models, in particular, to the multi-mode bosonic Gaussian measurement channels. An explicit formula for the classical capacity of the Gaussian measurement channel is obtained in this paper without assuming the global gauge symmetry, solely under certain threshold condition. The result is illustrated by the capacity computation for one-mode squeezed-noise heterodyne measurement channel.
We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a sh ort-range quantum Hamiltonian. Conversely, we also derive an upper bound on the (quantum) conditional mutual information of Gibbs states of 1D short-range quantum Hamiltonians. We show that the conditional mutual information between two regions A and C conditioned on the middle region B decays exponentially with the square root of the length of B. These two results constitute a variant of the Hammersley-Clifford theorem (which characterizes Markov networks, i.e. probability distributions which have vanishing conditional mutual information, as Gibbs states of classical short-range Hamiltonians) for 1D quantum systems. The result can be seen as a strengthening - for 1D systems - of the mutual information area law for thermal states. It directly implies an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth quantum circuit.
Quantum Fisher information, as an intrinsic quantity for quantum states, is a central concept in quantum detection and estimation. When quantum measurements are performed on quantum states, classical probability distributions arise, which in turn lea d to classical Fisher information. In this article, we exploit the classical Fisher information induced by quantum measurements, and reveal a rich hierarchical structure of such measurement-induced Fisher information. We establish a general framework for the distribution and transfer of the Fisher information. In particular, we illustrate three extremal distribution types of the Fisher information: the locally owned type, the locally inaccessible type, and the fully shared type. Furthermore, we indicate the significant role played by the distribution and flow of the Fisher information in some physical problems, e.g., the non-Markovianity of open quantum processes, the environment-assisted metrology, the cloning and broadcasting, etc.
The present paper is devoted to investigation of the entropy reduction and entanglement-assisted classical capacity (information gain) of continuous variable quantum measurements. These quantities are computed explicitly for multimode Gaussian measur ement channels. For this we establish a fundamental property of the entropy reduction of a measurement: under a restriction on the second moments of the input state it is maximized by a Gaussian state (providing an analytical expression for the maximum). In the case of one mode, the gain of entanglement assistance is investigated in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا