ﻻ يوجد ملخص باللغة العربية
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
The dynamics of two variants of quantum Fisher information under decoherence are investigated from a geometrical point of view. We first derive the explicit formulas of these two quantities for a single qubit in terms of the Bloch vector. Moreover, w
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace inte
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha
The uncertainty principle bounds the uncertainties about incompatible measurements, clearly setting quantum theory apart from the classical world. Its mathematical formulation via uncertainty relations, plays an irreplaceable role in quantum technolo