ﻻ يوجد ملخص باللغة العربية
We classify the rational Yangian invariants of the $m=2$ toy model of $mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.
We conjecture that every rational Yangian invariant in N=4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4,n) to check numerous examples.
We classify all positive n-particle N^kMHV Yangian invariants in N=4 Yang-Mills theory with n=5k, which we call extremal because none exist for n>5k. We show that this problem is equivalent to that of enumerating plane cactus graphs with k pentagons.
We exploit the recently described property of cluster adjacency for scattering amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory to construct the symbol of the four-loop NMHV heptagon amplitude. We use a manifestly cluster adjacent ansatz a
We study cluster adjacency conjectures for amplitudes in maximally supersymmetric Yang-Mills theory. We show that the n-point one-loop NMHV ratio function satisfies Steinmann cluster adjacency. We also show that the one-loop BDS-like normalized NMHV
We derive closed formulae for the first examples of non-algebraic, elliptic `leading singularities in planar, maximally supersymmetric Yang-Mills theory and show that they are Yangian-invariant.