ترغب بنشر مسار تعليمي؟ اضغط هنا

Yangian Invariants and Cluster Adjacency in N=4 Yang-Mills

103   0   0.0 ( 0 )
 نشر من قبل Marcus Spradlin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We conjecture that every rational Yangian invariant in N=4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4,n) to check numerous examples.

قيم البحث

اقرأ أيضاً

We classify the rational Yangian invariants of the $m=2$ toy model of $mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariant s for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.
We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the ${cal N} = 4$ $SU(N)$ super-Yang-Mills theory, in the limit where $N$ is taken to be large while the complexified Yang-Mills coupling $tau $ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the ${cal N} = 2^*$ theory with respect to the squashing parameter $b$ and mass parameter $m$, evaluated at the values $b=1$ and $m=0$ that correspond to the ${cal N} = 4$ theory on a round sphere. At each order in the $1/N$ expansion, these fourth derivatives are modular invariant functions of $(tau, bar tau)$. We present evidence that at half-integer orders in $1/N$, these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in $1/N$, they are certain generalized Eisenstein series which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in $AdS_5times S^5$.
We review the bootstrap method for constructing six- and seven-particle amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory, by exploiting their analytic structure. We focus on two recently discovered properties which greatly simplify this co nstruction at symbol and function level, respectively: the extended Steinmann relations, or equivalently cluster adjacency, and the coaction principle. We then demonstrate their power in determining the six-particle amplitude through six and seven loops in the NMHV and MHV sectors respectively, as well as the symbol of the NMHV seven-particle amplitude to four loops.
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetri c Yang-Mills (SYM) actions are explicitly given in the cases of (2,2) and critical (4,0) AdS supersymmetries. The N=4 vector multiplets and the corresponding actions are then reduced to (2,0) AdS superspace, in which only N=2 supersymmetry is manifest. Using the off-shell structure of the N=4 vector multiplets, we provide complete N=4 SYM actions in (2,0) AdS superspace for all types of N=4 AdS supersymmetry. In the case of (4,0) AdS supersymmetry, which admits a Euclidean counterpart, the resulting N=2 action contains a Chern-Simons term proportional to q/r, where r is the radius of AdS_3 and q is the R-charge of a chiral scalar superfield. The R-charge is a linear inhomogeneous function of X, an expectation value of the N=4 Cotton superfield. Thus our results explain the mysterious structure of N=4 supersymmetric Yang-Mills theories on S^3 discovered in arXiv:1401.7952. In the case of (3,1) AdS supersymmetry, which has no Euclidean counterpart, the SYM action contains both a Chern-Simons term and a chiral mass-like term. In the case of (2,2) AdS supersymmetry, which admits a Euclidean counterpart, the SYM action has no Chern-Simons and chiral mass-like terms.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا