ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal momentum-to-real-space mapping of topological singularities

217   0   0.0 ( 0 )
 نشر من قبل Daohong Song
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological properties of materials, as manifested in the intriguing phenomena of quantum Hall effect and topological insulators, have attracted overwhelming transdisciplinary interest in recent years. Topological edge states, for instance, have been realized in versatile systems including electromagnetic-waves. Typically, topological properties are revealed in momentum space, using concepts such as Chern number and Berry phase. Here, we demonstrate a universal mapping of the topology of Dirac-like cones from momentum space to real space. We evince the mapping by exciting the cones in photonic honeycomb (pseudospin-1/2) and Lieb (pseudospin-1) lattices with vortex beams of topological charge l, optimally aligned for a chosen pseudospin state s, leading to direct observation of topological charge conversion that follows the rule of l to l+2s. The mapping is theoretically accounted for all initial excitation conditions with the pseudospin-orbit interaction and nontrivial Berry phases. Surprisingly, such a mapping exists even in a deformed lattice where the total angular momentum is not conserved, unveiling its topological origin. The universality of the mapping extends beyond the photonic platform and 2D lattices: equivalent topological conversion occurs for 3D Dirac-Weyl synthetic magnetic monopoles, which could be realized in ultracold atomic gases and responsible for mechanism behind the vortex creation in electron beams traversing a magnetic monopole field.

قيم البحث

اقرأ أيضاً

Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependen t unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.
Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse wavevector components of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse kicks to the photons in the beam. We engineer our quantum walk so that it realizes a periodically-driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems.
We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both three dimensions (3D) and two dimensions (2D), and is particularly suitable for 2D, where it can be achieved by coupling a quantum spin Hall insulator with a magnetic substrate. Using first-principles calculations, we predict bismuthene on EuO(111) surface as the first realistic system for a 2D magnetic SOTI. We explicitly demonstrate the existence of the protected corner states. Benefited from the large spin-orbit coupling and sizable magnetic proximity effect, these corner states are located in a boundary gap $sim 83$ meV, hence can be readily probed in experiment. By controlling the magnetic phase transition, a topological phase transition between a first-order TI and a SOTI can be simultaneously achieved in the system. The effect of symmetry breaking, the connection with filling anomaly, and the experimental detection are discussed.
The winding number has been widely used as an invariant for diagnosing topological phases in one-dimensional chiral-symmetric systems. We put forward a real-space representation for the winding number. Remarkably, our method reproduces an exactly qua ntized winding number even in the presence of disorders that break translation symmetry but preserve chiral symmetry. We prove that our real-space representation of the winding number, the winding number defined through the twisted boundary condition, and the real-space winding number derived previously in [Phys. Rev. Lett. 113, 046802 (2014)], are equivalent in the thermodynamic limit at half filling. Our method also works for the case of filling less than one half, where the winding number is not necessarily quantized. Around the disorder-induced topological phase transition, the real-space winding number has large fluctuations for different disordered samples, however, its average over an ensemble of disorder samples may well identify the topological phase transition. Besides, we show that our real-space winding number can be expressed as a Bott index, which has been used to represent the Chern number for two-dimensional systems.
Dirac plasmon polaritons in topological insulators (TIs),light coupled to massless Dirac electrons, have been attracting a large amount of attention, both from a fundamental perspective and for potential terahertz (THz) photonic applications. Althoug h THz polaritons have been observed by far-field THz spectroscopy on TI microstructures, real-space imaging of propagating THz polaritons in unstructured TIs has been elusive so far. Here, we show the very first spectroscopic THz near-field images of thin Bi2Se3 layers (prototypical TIs) revealing polaritons with up to 12 times increased momenta as compared to photons of the same energy and decay times of about 0.24 ps, yet short propagation lengths. From the near-field images we determine the polariton dispersions in layers from 120 to 25 nm thickness and perform a systematic theoretical dispersion analysis, showing that the observed polaritons can be explained only by the simultaneous coupling of THz radiation to Dirac carriers at the TI surfaces, massive bulk carriers and optical phonons. Our work does not only provide critical insights into the nature of THz polaritons in TIs, but also establishes instrumentation of unprecedented sensitivity for imaging of THz polaritons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا