ﻻ يوجد ملخص باللغة العربية
This paper considers the problem of service placement and task scheduling on a three-tiered edge-to-cloud platform when user requests must be met by a certain deadline. Time-sensitive applications (e.g., augmented reality, gaming, real-time video analysis) have tight constraints that must be met. With multiple possible computation centers, the where and when of solving these requests becomes paramount when meeting their deadlines. We formulate the problem of meeting users deadlines while minimizing the total cost of the edge-to-cloud service provider as an Integer Linear Programming (ILP) problem. We show the NP-hardness of this problem, and propose two heuristics based on making decisions on a local vs global scale. We vary the number of users, the QoS constraint, and the cost difference between remote cloud and cloudlets(edge clouds), and run multiple Monte-Carlo runs for each case. Our simulation results show that the proposed heuristics are performing close to optimal while reducing the complexity.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload
With the proliferation of mobile applications, Mobile Cloud Computing (MCC) has been proposed to help mobile devices save energy and improve computation performance. To further improve the quality of service (QoS) of MCC, cloud servers can be deploye
We revisit the long-standing problem of providing network QoS to applications, and propose the concept of judicious QoS -- combining the cheaper, best effort IP service with the cloud, which offers a highly reliable infrastructure and the ability to
Technical advances in ubiquitous sensing, embedded computing, and wireless communication are leading to a new generation of engineered systems called cyber-physical systems (CPS). CPS promises to transform the way we interact with the physical world
The vehicular ad-hoc network (VANET) based on dedicated short-range communication (DSRC) is a distributed communication system, in which all the nodes share the wireless channel with carrier sense multiple access/collision avoid (CSMA/CA) protocol. H