ترغب بنشر مسار تعليمي؟ اضغط هنا

QoS-aware Link Scheduling Strategy for Data Transmission in SDVN

130   0   0.0 ( 0 )
 نشر من قبل Mao Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The vehicular ad-hoc network (VANET) based on dedicated short-range communication (DSRC) is a distributed communication system, in which all the nodes share the wireless channel with carrier sense multiple access/collision avoid (CSMA/CA) protocol. However, the backoff mechanism of CSMA/CA in the channel contention might cause uncertain transmission delay and impede a certain quality of service (QoS) of applications. Moreover, there still exists a possibility of parlous data-packets collision, especially for broadcast or non-acknowledgement (NACK) transmissions. The original contributions of this paper are summarized as follows: (1) Model the packets collision probability of broadcast or NACK transmission in VANET with the combination theory and investigate the potential influence of miss my packets (MMP) problem. (2) Based on the software define vehicular network (SDVN) framework and QoS requirement, a novel link-level scheduling strategy, which determines the start-sending time for each connection, is proposed to maximize packets delivery ratio (PDR). Alternatively, maximizing PDR has been converted to the overlap minimization among transmission durations. (3) Meanwhile, an innovative transmission scheduling greedy search (TSGS) algorithm is originally proposed to mitigate computational complexity. Extensive simulations have been done in a unified platform Veins combining SUMO and OMNET++. And numerous results show that the proposed algorithm can effectively improve the PDR by at least 15%, enhance the collision-avoidance performance by almost 40%, and reduce the MMP ratio by about 3% compared with the random transmitting, meanwhile meet the QoS requirement.



قيم البحث

اقرأ أيضاً

421 - Yong Zhang , Mao Ye , Lin Guan 2021
The vehicular ad-hoc network (VANET) based on dedicated short-range communication (DSRC) is a distributed communication system, in which all the nodes share the wireless channel with carrier sense multiple access/collision avoid (CSMA/CA) protocol. H owever, the competition and backoff mechanisms of CSMA/CA often bring additional delays and data packet collisions, which may hardly meet the QoS requirements in terms of delay and packets delivery ratio (PDR). Moreover, because of the distribution nature of security information in broadcast mode, the sender cannot know whether the receivers have received the information successfully. Similarly, this problem also exists in no-acknowledge (non-ACK) transmissions of VANET. Therefore, the probability of packet collisions should be considered in broadcast or non-ACK working modes. This paper presents a connection-level scheduling algorithm overlaid on CSMA/CA to schedule the start sending time of each transmission. By converting the object of reducing collision probability to minimizing the overlap of transmission durations of connections, the probability of backoff-activation can be greatly decreased. Then the delay and the probability of packet collisions can also be decreased. Numerical simulations have been conducted in our unified platform containing SUMO, Veins and Omnet++. The result shows that the proposed algorithm can effectively improve the PDR and reduce the packets collision in VANET.
In this paper, we consider the problem of real-time transmission scheduling over time-varying channels. We first formulate the transmission scheduling problem as a Markov decision process (MDP) and systematically unravel the structural properties (e. g. concavity in the state-value function and monotonicity in the optimal scheduling policy) exhibited by the optimal solutions. We then propose an online learning algorithm which preserves these structural properties and achieves -optimal solutions for an arbitrarily small . The advantages of the proposed online method are that: (i) it does not require a priori knowledge of the traffic arrival and channel statistics and (ii) it adaptively approximates the state-value functions using piece-wise linear functions and has low storage and computation complexity. We also extend the proposed low-complexity online learning solution to the prioritized data transmission. The simulation results demonstrate that the proposed method achieves significantly better utility (or delay)-energy trade-offs when comparing to existing state-of-art online optimization methods.
We propose a multicast scheduling scheme to exploit content reuse when there is asynchronicity in user requests. A unicast transmission setup is used for content delivery, while multicast transmission is employed opportunistically to reduce wireless resource usage. We then develop a multicast scheduling scheme for the downlink multiple-input multiple output orthogonal-frequency division multiplexing system in IEEE 802.11 wireless local area network (WLAN). At each time slot, the scheduler serves the users by either unicast or multicast transmission. Out-sequence data received by a user is stored in users cache for future use.Multicast precoding and user selection for multicast grouping are also considered and compliance with the IEEE 802.11 WLAN transmission protocol. The scheduling scheme is based on the Lyapunov optimization technique, which aims to maximize system rate. The resulting scheme has low complexity and requires no prior statistical information on the channels and queues. Furthermore, in the absence of channel error, the proposed scheme restricts the worst case of frame dropping deadline, which is useful for delivering real-time traffic. Simulation results show that our proposed algorithm outperforms existing techniques by 17 % to 35 % in term of user capacity.
141 - Z. Ding , R. Schober , H. V. Poor 2020
Semi-grant-free (SGF) transmission has recently received significant attention due to its capability to accommodate massive connectivity and reduce access delay by admitting grant-free users to channels which would otherwise be solely occupied by gra nt-based users. In this paper, a new SGF transmission scheme that exploits the flexibility in choosing the decoding order in non-orthogonal multiple access (NOMA) is proposed. Compared to existing SGF schemes, this new scheme can ensure that admitting the grant-free users is completely transparent to the grant-based users, i.e., the grant-based users quality-of-service experience is guaranteed to be the same as for orthogonal multiple access. In addition, compared to existing SGF schemes, the proposed SGF scheme can significantly improve the robustness of the grant-free users transmissions and effectively avoid outage probability error floors. To facilitate the performance evaluation of the proposed SGF transmission scheme, an exact expression for the outage probability is obtained and an asymptotic analysis is conducted to show that the achievable multi-user diversity gain is proportional to the number of participating grant-free users. Computer simulation results demonstrate the performance of the proposed SGF transmission scheme and verify the accuracy of the developed analytical results.
Unmanned aerial vehicles (UAVs) are usually dispatched as mobile sinks to assist data collection in large-scale wireless sensor networks (WSNs). However, when considering the limitations of UAVs mobility and communication capabilities in a large-scal e WSN, some sensor nodes may run out of storage space as they fail to offload their data to the UAV for an extended period of time. To minimize the data loss caused by the above issue, a joint user scheduling and trajectory planning data collection strategy is proposed in this letter, which is formulated as a non-convex optimization problem. The problem is further divided into two sub-problems and solved sequentially. Simulation results show that the proposed strategy is more effective in minimizing data loss rate than other strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا