ترغب بنشر مسار تعليمي؟ اضغط هنا

Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model

182   0   0.0 ( 0 )
 نشر من قبل Wenbo Gong
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce the ice-start problem, i.e., the challenge of deploying machine learning models when only little or no training data is initially available, and acquiring each feature element of data is associated with costs. This setting is representative for the real-world machine learning applications. For instance, in the health-care domain, when training an AI system for predicting patient metrics from lab tests, obtaining every single measurement comes with a high cost. Active learning, where only the label is associated with a cost does not apply to such problem, because performing all possible lab tests to acquire a new training datum would be costly, as well as unnecessary due to redundancy. We propose Icebreaker, a principled framework to approach the ice-start problem. Icebreaker uses a full Bayesian Deep Latent Gaussian Model (BELGAM) with a novel inference method. Our proposed method combines recent advances in amortized inference and stochastic gradient MCMC to enable fast and accurate posterior inference. By utilizing BELGAMs ability to fully quantify model uncertainty, we also propose two information acquisition functions for imputation and active prediction problems. We demonstrate that BELGAM performs significantly better than the previous VAE (Variational autoencoder) based models, when the data set size is small, using both machine learning benchmarks and real-world recommender systems and health-care applications. Moreover, based on BELGAM, Icebreaker further improves the performance and demonstrate the ability to use minimum amount of the training data to obtain the highest test time performance.



قيم البحث

اقرأ أيضاً

We investigate active learning in Gaussian Process state-space models (GPSSM). Our problem is to actively steer the system through latent states by determining its inputs such that the underlying dynamics can be optimally learned by a GPSSM. In order that the most informative inputs are selected, we employ mutual information as our active learning criterion. In particular, we present two approaches for the approximation of mutual information for the GPSSM given latent states. The proposed approaches are evaluated in several physical systems where we actively learn the underlying non-linear dynamics represented by the state-space model.
69 - Jun Lu 2021
Clustering has become a core technology in machine learning, largely due to its application in the field of unsupervised learning, clustering, classification, and density estimation. A frequentist approach exists to hand clustering based on mixture m odel which is known as the EM algorithm where the parameters of the mixture model are usually estimated into a maximum likelihood estimation framework. Bayesian approach for finite and infinite Gaussian mixture model generates point estimates for all variables as well as associated uncertainty in the form of the whole estimates posterior distribution. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in Bayesian inference for finite and infinite Gaussian mixture model in order to seamlessly introduce their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning this field and given the paucity of scope to present this discussion, e.g., the separated analysis of the generation of Dirichlet samples by stick-breaking and Polyas Urn approaches. We refer the reader to literature in the field of the Dirichlet process mixture model for a much detailed introduction to the related fields. Some excellent examples include (Frigyik et al., 2010; Murphy, 2012; Gelman et al., 2014; Hoff, 2009). This survey is primarily a summary of purpose, significance of important background and techniques for Gaussian mixture model, e.g., Dirichlet prior, Chinese restaurant process, and most importantly the origin and complexity of the methods which shed light on their modern applications. The mathematical prerequisite is a first course in probability. Other than this modest background, the development is self-contained, with rigorous proofs provided throughout.
Solving real-life sequential decision making problems under partial observability involves an exploration-exploitation problem. To be successful, an agent needs to efficiently gather valuable information about the state of the world for making reward ing decisions. However, in real-life, acquiring valuable information is often highly costly, e.g., in the medical domain, information acquisition might correspond to performing a medical test on a patient. This poses a significant challenge for the agent to perform optimally for the task while reducing the cost for information acquisition. In this paper, we propose a model-based reinforcement learning framework that learns an active feature acquisition policy to solve the exploration-exploitation problem during its execution. Key to the success is a novel sequential variational auto-encoder that learns high-quality representations from partially observed states, which are then used by the policy to maximize the task reward in a cost efficient manner. We demonstrate the efficacy of our proposed framework in a control domain as well as using a medical simulator. In both tasks, our proposed method outperforms conventional baselines and results in policies with greater cost efficiency.
Latent variables may lead to spurious relationships that can be misinterpreted as causal relationships. In Bayesian Networks (BNs), this challenge is known as learning under causal insufficiency. Structure learning algorithms that assume causal insuf ficiency tend to reconstruct the ancestral graph of a BN, where bi-directed edges represent confounding and directed edges represent direct or ancestral relationships. This paper describes a hybrid structure learning algorithm, called CCHM, which combines the constraint-based part of cFCI with hill-climbing score-based learning. The score-based process incorporates Pearl s do-calculus to measure causal effects and orientate edges that would otherwise remain undirected, under the assumption the BN is a linear Structure Equation Model where data follow a multivariate Gaussian distribution. Experiments based on both randomised and well-known networks show that CCHM improves the state-of-the-art in terms of reconstructing the true ancestral graph.
Context-aware recommender systems (CARS) have gained increasing attention due to their ability to utilize contextual information. Compared to traditional recommender systems, CARS are, in general, able to generate more accurate recommendations. Laten t factors approach accounts for a large proportion of CARS. Recently, a non-linear Gaussian Process (GP) based factorization method was proven to outperform the state-of-the-art methods in CARS. Despite its effectiveness, GP model-based methods can suffer from over-fitting and may not be able to determine the impact of each context automatically. In order to address such shortcomings, we propose a Gaussian Process Latent Variable Model Factorization (GPLVMF) method, where we apply an appropriate prior to the original GP model. Our work is primarily inspired by the Gaussian Process Latent Variable Model (GPLVM), which was a non-linear dimensionality reduction method. As a result, we improve the performance on the real datasets significantly as well as capturing the importance of each context. In addition to the general advantages, our method provides two main contributions regarding recommender system settings: (1) addressing the influence of bias by setting a non-zero mean function, and (2) utilizing real-valued contexts by fixing the latent space with real values.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا