ترغب بنشر مسار تعليمي؟ اضغط هنا

The category of weight modules for symplectic oscillator Lie algebras

120   0   0.0 ( 0 )
 نشر من قبل Kaiming Zhao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spaces over $mathfrak{g}_n$. When $dot z eq 0$, it is shown that there is an equivalence between the full subcategory $mathcal{O}_{mathfrak{g}_n}[dot z]$ of the BGG category $mathcal{O}_{mathfrak{g}_n}$ for $mathfrak{g}_n$ and the BGG category $mathcal{O}_{mathfrak{sp}_{2n}}$ for $mathfrak{sp}_{2n}$. Then using the technique of localization and the structure of generalized highest weight modules, we also give the classification of simple weight modules over $mathfrak{g}_n$ with finite-dimensional weight spaces.



قيم البحث

اقرأ أيضاً

The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$ is a metric symplectic $3$-Lie algebra if and only if there exists an invertible derivation $D$ such that $Din Der_B(A)$, and is also proved that every metric symplectic $3$-Lie algebra $(tilde{A}, tilde{B}, tilde{omega})$ is a $T^*_{theta}$-extension of a metric symplectic $3$-Lie algebra $(A, B, omega)$. Finally, we construct a metric symplectic double extension of a metric symplectic $3$-Lie algebra by means of a special derivation.
141 - Genqiang Liu , Yang Li , Keke Wang 2020
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization , we give a complete classification of irreducible weight $mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $mathfrak{so}_n$-modules, $mathfrak{sl}_2$-modules and modules over the Weyl algebra.
In 2006, Gao and Zeng cite{GZ} gave the free field realizations of highest weight modules over a class of extended affine Lie algebras. In the present paper, applying the technique of localization to those free field realizations, we construct a clas s of new weight modules over the extended affine Lie algebras. We give necessary and sufficient conditions for these modules to be irreducible. In this way, we construct free field realizations for a class of simple weight modules with infinite weight multiplicities over the extended affine Lie algebras.
143 - Kori Tosiaki 2020
We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove t hat a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional.
We examine in detail the Jacobi-Trudi characters over the ortho-symplectic Lie superalgebras spo(2|2m+1) and spo(2n|3). We furthermore relate them to Serganovas notion of Euler characters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا