ﻻ يوجد ملخص باللغة العربية
We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove that a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional.
Let L be the space of spinors on the 3-sphere that are the restrictions of the Laurent polynomial type harmonic spinors on C^2. L becomes an associative algebra. For a simple Lie algebra g, the real Lie algebra Lg generated by the tensor product of L
The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$
We consider the centers of the affine vertex algebras at the critical level associated with simple Lie algebras. We derive new formulas for generators of the centers in the classical types. We also give a new formula for the Capelli-type determinant
In this paper we study the asymptotic of multiplicities of irreducible representations in large tensor products of finite dimensional representations of simple Lie algebras and their statistics with respect to Plancherel and character probability mea
We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of