ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible weight modules over the Schr{o}dinger Lie algebra in $(n+1)$ dimensional space-time

142   0   0.0 ( 0 )
 نشر من قبل Genqiang Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization, we give a complete classification of irreducible weight $mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $mathfrak{so}_n$-modules, $mathfrak{sl}_2$-modules and modules over the Weyl algebra.



قيم البحث

اقرأ أيضاً

In the present paper, using the technique of localization, we determine the center of the quantum Schr{o}dinger algebra $S_q$ and classify simple modules with finite-dimensional weight spaces over $S_q$, when $q$ is not a root of unity. It turns out that there are four classes of such modules: dense $U_q(mathfrak{sl}_2)$-modules, highest weight modules, lowest weight modules, and twisted modules of highest weight modules.
In this paper, the property and the classification the simple Whittaker modules for the schr{o}dinger algebra are studied. A quasi-central element plays an important role in the study of Whittaker modules of level zero. For the Whittaker modules of n onzero level, our arguments use the Casimir element of semisimple Lie algebra $sl_2$ and the description of simple modules over conformal Galilei algebras by R. L{u}, V. Mazorchuk and K. Zhao.
Let ${mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple submodule in a tensor module associated with the de Rham complex on $mathbb C^n$.
119 - Genqiang Liu , Kaiming Zhao 2019
The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spa ces over $mathfrak{g}_n$. When $dot z eq 0$, it is shown that there is an equivalence between the full subcategory $mathcal{O}_{mathfrak{g}_n}[dot z]$ of the BGG category $mathcal{O}_{mathfrak{g}_n}$ for $mathfrak{g}_n$ and the BGG category $mathcal{O}_{mathfrak{sp}_{2n}}$ for $mathfrak{sp}_{2n}$. Then using the technique of localization and the structure of generalized highest weight modules, we also give the classification of simple weight modules over $mathfrak{g}_n$ with finite-dimensional weight spaces.
219 - Dong Liu , Cuipo Jiang 2008
In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا