ترغب بنشر مسار تعليمي؟ اضغط هنا

Chlorine-bearing molecules in molecular absorbers at intermediate redshifts

75   0   0.0 ( 0 )
 نشر من قبل Sofia Wallstr\\\"om
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use observations of chlorine-bearing species in molecular absorbers at intermediate redshifts to investigate chemical properties and $^{35}$Cl/$^{37}$Cl isotopic ratios in the absorbing sightlines. Chloronium (H$_2$Cl$^+$) is detected along three independent lines of sight in the z=0.89 and z=0.68 molecular absorbers located in front of the lensed quasars PKS 1830-211 and B 0218+357, respectively. Hydrogen chloride (HCl) was observed only toward PKS 1830-211, and is found to behave differently from H$_2$Cl$^+$. It is detected in one line of sight with an abundance ratio [H$_2$Cl$^+$]/[HCl] $sim 1$, but remains undetected in the other, more diffuse, line of sight, with a ratio [H$_2$Cl$^+$]/[HCl]~$>17$. The absorption profiles of these two chlorine-bearing species are compared to other species and discussed in terms of the physical properties of the absorbing gas. Our findings are consistent with the picture emerging from chemical models where different species trace gas with different molecular hydrogen fraction. The $^{35}$Cl/$^{37}$Cl isotopic ratios are measured in the different lines of sight and are discussed in terms of stellar nucleosynthesis.



قيم البحث

اقرأ أيضاً

245 - M. A. Zwaan 2015
We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0<z<1.2). For our total sample of 24 systems, we obtained high quality data for 17 systems, the other seven being severely affected by radio frequ ency interference (RFI). Five of our targets are low redshift (z<0.17) optical galaxies with small impact parameters (<20 kpc) toward radio-bright background sources. Two of these were detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km/s, which puts an upper limit on the kinetic temperature of T_k<270 K. Combining our observations with results from the literature, we measure a weak anti-correlation between impact parameter and integral optical depth in local (z<0.5) 21-cm absorbers. Of eleven CaII and MgII systems searched, two were detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z~0.6 we measure spin temperatures of T_s=(65+/-17) K and T_s>180 K. A subset of our systems were also searched for OH absorption, but no detections were made.
We investigate the role of dense Mpc-scale environments in processing molecular gas of cluster galaxies as they fall into the cluster cores. We consider $sim20$ luminous infrared galaxies (LIRGs) in intermediate-$z$ clusters, from the Hershel Lensing Survey and the Local Cluster Substructure Survey. They include MACS J0717.5+3745 at $z=0.546$ and Abell 697, 963, 1763, and 2219 at $z=0.2-0.3$. We have performed far infrared to ultraviolet spectral energy distribution modeling of the LIRGs, which span cluster-centric distances within $r/r_{200}simeq0.2-1.6$. We have observed the LIRGs in CO(1$rightarrow$0) or CO(2$rightarrow$1) with the Plateau de Bure interferometer and its successor NOEMA, as part of five observational programs carried out between 2012 and 2017. We have compared the molecular gas to stellar mass ratio $M(H_2)/M_star$, star formation rate (SFR), and depletion time ($tau_{rm dep}$) of the LIRGs with those of a compilation of cluster and field star forming galaxies. The targeted LIRGs have SFR, $M(H_2)/M_star$, and $tau_{rm dep}$ that are consistent with those of both main sequence (MS) field galaxies and star forming galaxies from the comparison sample. However we find that the depletion time, normalized to the MS value, increases with increasing $r/r_{200}$, with a significance of $2.8sigma$, which is ultimately due to a deficit of cluster core LIRGs with $tau_{rm dep}gtrsimtau_{rm dep,MS}$. We suggest that a rapid exhaustion of the molecular gas reservoirs occurs in the cluster LIRGs and is effective in suppressing their star formation. This mechanism may explain the exponential decrease of the fraction of cluster LIRGs with cosmic time. The compression of the gas in LIRGs, possibly induced by intra-cluster medium shocks, may be responsible for the short depletion timescales, observed in a large fraction of cluster core LIRGs.
78 - N. Kanekar 2018
The nature of absorption-selected galaxies and their connection to the general galaxy population have been open issues for more than three decades, with little information available on their gas properties. Here we show, using detections of carbon mo noxide (CO) emission with the Atacama Large Millimeter/submillimeter Array (ALMA), that five of seven high-metallicity, absorption-selected galaxies at intermediate redshifts, $z approx 0.5-0.8$, have large molecular gas masses, $M_{rm Mol} approx (0.6 - 8.2) times 10^{10} : {rm M}_odot$ and high molecular gas fractions ($f_{rm Mol} equiv : M_{rm Mol}/(M_ast + M_{rm Mol}) approx 0.29-0.87)$. Their modest star formation rates (SFRs), $approx (0.3-9.5) : {rm M}_odot$ yr$^{-1}$, then imply long gas depletion timescales, $approx (3 - 120)$ Gyr. The high-metallicity absorption-selected galaxies at $z approx 0.5-0.8$ appear distinct from populations of star-forming galaxies at both $z approx 1.3-2.5$, during the peak of star formation activity in the Universe, and lower redshifts, $z lesssim 0.05$. Their relatively low SFRs, despite the large molecular gas reservoirs, may indicate a transition in the nature of star formation at intermediate redshifts, $z approx 0.7$.
A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z~3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Pa ssive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2-1) emission in 8 massive (Mstar ~ 10^11 Msol) galaxies at z~0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census (LEGA-C) survey. We significantly detect half the sample, finding molecular gas fractions <~0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population over-predict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
251 - Gan Luo , Siyi Feng , Di Li 2019
We present an observational study of the sulfur (S)-bearing species towards Orion KL at 1.3 mm by combining ALMA and IRAM-30,m single-dish data. At a linear resolution of $sim$800 au and a velocity resolution of 1 $mathrm{km, s^{-1}, }$, we have iden tified 79 molecular lines from 6 S-bearing species. In these S-bearing species, we found a clear dichotomy between carbon-sulfur compounds and carbon-free S-bearing species in various characteristics, e.g., line profiles, spatial morphology, and molecular abundances with respect to $rm H_2$. Lines from the carbon-sulfur compounds (i.e., OCS, $^{13}$CS, H$_2$CS) exhibit spatial distributions concentrated around the continuum peaks and extended to the south ridge. The full width at half maximum (FWHM) linewidth of these molecular lines is in the range of 2 $sim$ 11 $mathrm{km, s^{-1}, }$. The molecular abundances of OCS and H$_2$CS decrease slightly from the cold ($sim$68 K) to the hot ($sim$176 K) regions. In contrast, lines from the carbon-free S-bearing species (i.e., SO$_2$, $^{34}$SO, H$_2$S) are spatially more extended to the northeast of mm4, exhibiting broader FWHM linewidths (15 $sim$ 26 $mathrm{km, s^{-1}, }$). The molecular abundances of carbon-free S-bearing species increase by over an order of magnitude as the temperature increase from 50 K to 100 K. In particular, $mathrm{^{34}SO/^{34}SO_2}$ and $mathrm{OCS/SO_2}$ are enhanced from the warmer regions ($>$100 K) to the colder regions ($sim$50 K). Such enhancements are consistent with the transformation of SO$_2$ at warmer regions and the influence of shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا