ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Gas Contents and Scaling Relations for Massive Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

78   0   0.0 ( 0 )
 نشر من قبل Justin Spilker
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z~3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2-1) emission in 8 massive (Mstar ~ 10^11 Msol) galaxies at z~0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census (LEGA-C) survey. We significantly detect half the sample, finding molecular gas fractions <~0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population over-predict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.



قيم البحث

اقرأ أيضاً

We present a comparison of the observed, spatially integrated stellar and ionized gas velocity dispersions of $sim1000$ massive ($log M_{star}/M_{odot}gtrsim,10.3$) galaxies in the Large Early Galaxy Astrophysics Census (LEGA-C) survey at $0.6lesssim ,zlesssim1.0$. The high $S/Nsim20{rmAA^{-1}}$ afforded by 20 hour VLT/VIMOS spectra allows for joint modeling of the stellar continuum and emission lines in all galaxies, spanning the full range of galaxy colors and morphologies. These observed integrated velocity dispersions (denoted as $sigma_{g, int}$ and $sigma_{star, int}$) are related to the intrinsic velocity dispersions of ionized gas or stars, but also include rotational motions through beam smearing and spectral extraction. We find good average agreement between observed velocity dispersions, with $langlelog(sigma_{g, int}/sigma_{star, int})rangle=-0.003$. This result does not depend strongly on stellar population, structural properties, or alignment with respect to the slit. However, in all regimes we find significant scatter between $sigma_{g, int}$ and $sigma_{star, int}$, with an overall scatter of 0.13 dex of which 0.05 dex is due to observational uncertainties. For an individual galaxy, the scatter between $sigma_{g, int}$ and $sigma_{star, int}$ translates to an additional uncertainty of $sim0.24rm{dex}$ on dynamical mass derived from $sigma_{g, int}$, on top of measurement errors and uncertainties from Virial constant or size estimates. We measure the $zsim0.8$ stellar mass Faber-Jackson relation and demonstrate that emission line widths can be used to measure scaling relations. However, these relations will exhibit increased scatter and slopes that are artificially steepened by selecting on subsets of galaxies with progressively brighter emission lines.
78 - N. Kanekar 2018
The nature of absorption-selected galaxies and their connection to the general galaxy population have been open issues for more than three decades, with little information available on their gas properties. Here we show, using detections of carbon mo noxide (CO) emission with the Atacama Large Millimeter/submillimeter Array (ALMA), that five of seven high-metallicity, absorption-selected galaxies at intermediate redshifts, $z approx 0.5-0.8$, have large molecular gas masses, $M_{rm Mol} approx (0.6 - 8.2) times 10^{10} : {rm M}_odot$ and high molecular gas fractions ($f_{rm Mol} equiv : M_{rm Mol}/(M_ast + M_{rm Mol}) approx 0.29-0.87)$. Their modest star formation rates (SFRs), $approx (0.3-9.5) : {rm M}_odot$ yr$^{-1}$, then imply long gas depletion timescales, $approx (3 - 120)$ Gyr. The high-metallicity absorption-selected galaxies at $z approx 0.5-0.8$ appear distinct from populations of star-forming galaxies at both $z approx 1.3-2.5$, during the peak of star formation activity in the Universe, and lower redshifts, $z lesssim 0.05$. Their relatively low SFRs, despite the large molecular gas reservoirs, may indicate a transition in the nature of star formation at intermediate redshifts, $z approx 0.7$.
We study the properties of the cold gas component of the interstellar medium of the Herschel Reference Survey, a complete volume-limited (15<D<25 Mpc), K-band-selected sample of galaxies spanning a wide range in morphological type (from E to Im) and stellar mass (10^9<M*<10^11 Mo). The multifrequency data in our hands are used to trace the molecular gas mass distribution and the main scaling relations of the sample, which put strong constraints on galaxy formation simulations. We extend the main scaling relations concerning the total and the molecular gas component determined for massive galaxies (M* > 10^10 Mo) from the COLD GASS survey down to stellar masses M* ~ 10^9 Mo. As scaling variables we use M*, the stellar surface density mu*, the specific star formation rate SSFR, and the metallicity of the target galaxies. By comparing molecular gas masses determined using a constant or a luminosity dependent conversion factor, we estimate the robustness of these scaling relations on the very uncertain assumptions used to transform CO line intensities into molecular gas masses. The molecular gas distribution of a K-band-selected sample is different from that of a far-infrared-selected sample since it includes a significantly smaller number of objects with M(H2) < 6 10^9 Mo. In spiral galaxies the molecular gas phase is only 25-30% of the atomic gas. The analysis also indicates that the slope of the main scaling relations depends on the adopted conversion factor. Among the sampled relations, all those concerning M(gas)/M* are statistically significant and show little variation with X_CO. We observe a significant correlation between M(H2)/M* and SSFR, M(H2)/M(HI) and mu*, M(H2)/M(HI), and 12+log(O/H) regardless of the adopted X_CO. The total and molecular gas consumption timescales are anticorrelated with the SSFR.
We investigate the role of dense Mpc-scale environments in processing molecular gas of cluster galaxies as they fall into the cluster cores. We consider $sim20$ luminous infrared galaxies (LIRGs) in intermediate-$z$ clusters, from the Hershel Lensing Survey and the Local Cluster Substructure Survey. They include MACS J0717.5+3745 at $z=0.546$ and Abell 697, 963, 1763, and 2219 at $z=0.2-0.3$. We have performed far infrared to ultraviolet spectral energy distribution modeling of the LIRGs, which span cluster-centric distances within $r/r_{200}simeq0.2-1.6$. We have observed the LIRGs in CO(1$rightarrow$0) or CO(2$rightarrow$1) with the Plateau de Bure interferometer and its successor NOEMA, as part of five observational programs carried out between 2012 and 2017. We have compared the molecular gas to stellar mass ratio $M(H_2)/M_star$, star formation rate (SFR), and depletion time ($tau_{rm dep}$) of the LIRGs with those of a compilation of cluster and field star forming galaxies. The targeted LIRGs have SFR, $M(H_2)/M_star$, and $tau_{rm dep}$ that are consistent with those of both main sequence (MS) field galaxies and star forming galaxies from the comparison sample. However we find that the depletion time, normalized to the MS value, increases with increasing $r/r_{200}$, with a significance of $2.8sigma$, which is ultimately due to a deficit of cluster core LIRGs with $tau_{rm dep}gtrsimtau_{rm dep,MS}$. We suggest that a rapid exhaustion of the molecular gas reservoirs occurs in the cluster LIRGs and is effective in suppressing their star formation. This mechanism may explain the exponential decrease of the fraction of cluster LIRGs with cosmic time. The compression of the gas in LIRGs, possibly induced by intra-cluster medium shocks, may be responsible for the short depletion timescales, observed in a large fraction of cluster core LIRGs.
We explore the connection between the kinematics, structures and stellar populations of massive galaxies at $0.6<z<1.0$ using the Fundamental Plane (FP). Combining stellar kinematic data from the Large Early Galaxy Astrophysics Census (LEGA-C) survey with structural parameters measured from deep Hubble Space Telescope imaging, we obtain a sample of 1419 massive ($log(M_*/M_odot) >10.5$) galaxies that span a wide range in morphology, star formation activity and environment, and therefore is representative of the massive galaxy population at $zsim0.8$. We find that quiescent and star-forming galaxies occupy the parameter space of the $g$-band FP differently and thus have different distributions in the dynamical mass-to-light ratio ($M_{rm dyn}/L_g$), largely owing to differences in the stellar age and recent star formation history, and, to a lesser extent, the effects of dust attenuation. In contrast, we show that both star-forming and quiescent galaxies lie on the same mass FP at $zsim 0.8$, with a comparable level of intrinsic scatter about the plane. We examine the variation in $M_{rm dyn}/M_*$ through the thickness of the mass FP, finding no significant residual correlations with stellar population properties, Sersic index, or galaxy overdensity. Our results suggest that, at fixed size and velocity dispersion, the variations in $M_{rm dyn}/L_g$ of massive galaxies reflect an approximately equal contribution of variations in $M_*/L_g$, and variations in the dark matter fraction or initial mass function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا