ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive, Absorption-selected Galaxies at Intermediate Redshifts

79   0   0.0 ( 0 )
 نشر من قبل Nissim Kanekar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Kanekar




اسأل ChatGPT حول البحث

The nature of absorption-selected galaxies and their connection to the general galaxy population have been open issues for more than three decades, with little information available on their gas properties. Here we show, using detections of carbon monoxide (CO) emission with the Atacama Large Millimeter/submillimeter Array (ALMA), that five of seven high-metallicity, absorption-selected galaxies at intermediate redshifts, $z approx 0.5-0.8$, have large molecular gas masses, $M_{rm Mol} approx (0.6 - 8.2) times 10^{10} : {rm M}_odot$ and high molecular gas fractions ($f_{rm Mol} equiv : M_{rm Mol}/(M_ast + M_{rm Mol}) approx 0.29-0.87)$. Their modest star formation rates (SFRs), $approx (0.3-9.5) : {rm M}_odot$ yr$^{-1}$, then imply long gas depletion timescales, $approx (3 - 120)$ Gyr. The high-metallicity absorption-selected galaxies at $z approx 0.5-0.8$ appear distinct from populations of star-forming galaxies at both $z approx 1.3-2.5$, during the peak of star formation activity in the Universe, and lower redshifts, $z lesssim 0.05$. Their relatively low SFRs, despite the large molecular gas reservoirs, may indicate a transition in the nature of star formation at intermediate redshifts, $z approx 0.7$.



قيم البحث

اقرأ أيضاً

We present the stellar population and ionized-gas outflow properties of ultra-luminous IR galaxies (ULIRGs) at $z=$ 0.1-1.0, which are selected from AKARI FIR all-sky survey. We construct a catalog of 1077 ULIRGs to examine feedback effect after majo r mergers. 202 out of the 1077 ULIRGs are spectroscopically identified by SDSS and Subaru/FOCAS observations. Thanks to deeper depth and higher resolution of AKARI compared to the previous IRAS survey, and reliable identification from WISE MIR pointing, the sample is unique in identifying optically-faint (i$sim$20) IR-bright galaxies, which could be missed in previous surveys. A self-consistent spectrum-SED decomposition method, which constrains stellar population properties in SED modeling based on spectral fitting results, has been employed for 149 ULIRGs whose optical continua are dominated by host galaxies. They are massive galaxies ($M_{rm star}sim10^{11}$-$10^{12}$ M$_{odot}$), associated with intense star formation activities (SFR $sim$ 200-2000 M$_{odot}$ yr$^{-1}$). The sample covers a range of AGN bolometric luminosity of $10^{10}$-$10^{13}$ L$_{odot}$, and the outflow velocity measured from [OIII] 5007A line shows a correlation with AGN luminosity. Eight galaxies show extremely fast outflows with velocity up to 1500-2000 km s$^{-1}$. However, the co-existence of vigorous starbursts and strong outflows suggests the star formation has not been quenched during the ULIRG phase. By deriving stellar mass and mass fraction of young stellar population, we find no significant discrepancies between stellar properties of ULIRGs with weak and powerful AGNs. The results are not consistent with the merger-induced evolutionary scenario, which predicts that SF-dominated ULIRGs show smaller stellar mass and younger stellar populations compared to AGN-dominated ULIRGs.
Massive quiescent compact galaxies have been discovered at high redshifts, associated with rapid compaction and cessation of star formation (SF). In this work we set out to quantify the time-scales in which SF is quenched in compact galaxies at inter mediate redshifts. For this, we select a sample of green valley galaxies within the COSMOS field in the midst of quenching their SF at $0.5<z<1.0$ that exhibit varying degrees of compactness. Based on the H$delta$ absorption line and the 4000 AA break of coadded zCOSMOS spectra for sub-samples of normal-sized and compact galaxies we determine quenching time-scales as a function of compactness. We find that the SF quenching time-scales in green valley compact galaxies are much shorter than in normal-sized ones. In an effort to understand this trend, we use the Illustris simulation to trace the evolution of the SF history, the growth rate of the central super massive black hole (SMBH) {bf and the AGN-feedback in compact and normal-sized galaxies. We find that the key difference between their SF quenching time-scales is linked to the mode of the AGN-feedback. In the compact galaxies predominates the kinematic-mode, which is highly efficient at quenching the SF by depleting the internal gas. On the normal-sized galaxies, the prevailing thermal-mode injects energy in the circumgalactic gas, impeding the cold gas supply and quenching the SF via the slower strangulation mechanism.} These results are consistent with the violent disk instability and gas-rich mergers scenarios, followed by strong AGN and stellar feedback. Although this kind of event is most expected to occur at $z=2-3$, we find evidences that the formation of compact quiescent galaxies can occur at $z<1$.
A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z~3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Pa ssive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2-1) emission in 8 massive (Mstar ~ 10^11 Msol) galaxies at z~0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census (LEGA-C) survey. We significantly detect half the sample, finding molecular gas fractions <~0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population over-predict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
162 - Fabio D. Barazza 2009
We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample o f 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.
We study properties of the host galaxies of 15 hard X-ray selected type-2 active galactic nuclei (AGNs) at intermediate redshifts (0.05$<z<$0.6) detected in $ASCA$ surveys. The absorption corrected hard X-ray luminosities $L_{rm 2-10 keV}$ range from 10$^{42}$ erg s$^{-1}$ to $10^{45}$ erg s$^{-1}$. We took the $R$-band image of these AGNs with the University of Hawaii 2.2 m telescope. Thanks to the intrinsic obscuration of nuclear light, we can decompose the galaxies with a spheroid component and a disk component. The resulting spheroid luminosities correlate with $L_{rm 2-10 keV}$; higher (lower) X-ray luminosity AGNs tend to reside in luminous (less luminous) spheroids. It is also found that the hosts of luminous AGNs show a large spheroid-to-disk luminosity ratio ($sim$1), while those of less luminous AGNs spread between 0 and 1. The correlation between $L_{rm 2-10keV}$ and spheroid luminosity indicates that the relation between mass of a supermassive black hole (SMBH) and spheroid luminosity (BS-relation) at the intermediate redshifts. The BS-relation agrees with that in the local universe if the Eddington ratio of 0.24 is adopted, which is a mean value determined from our $ASCA$ type-1 AGN sample at similar redshifts through the broad-line width and continuum luminosity. The present study demonstrates the effectiveness of using type-2 AGNs at high redshifts to study their host properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا