ﻻ يوجد ملخص باللغة العربية
Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing.
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. H
Topological valley photonics has emerged as a new frontier in photonics with many promising applications. Previous valley boundary transport relies on kink states at internal boundaries between two topologically distinct domains. However, recent stud
The recent realization of photonic topological insulators has brought the discovery of fundamentally new states of light and revolutionary applications such as non-reciprocal devices for photonic diodes and robust waveguides for light routing. The sp