ﻻ يوجد ملخص باللغة العربية
The exact nature of the many-body localization transition remains an open question. An aspect which has been posited in various studies is the emergence of scale invariance around this point, however the direct observation of this phenomenon is still absent. Here we achieve this by studying the logarithmic negativity and mutual information between disjoint blocks of varying size across the many-body localization transition. The two length scales, block sizes and the distance between them, provide a clear quantitative probe of scale invariance across different length scales. We find that at the transition point, the logarithmic negativity obeys a scale invariant exponential decay with respect to the ratio of block separation to size, whereas the mutual information obeys a polynomial decay. The observed scale invariance of the quantum correlations in a microscopic model opens the direction to probe the fractal structure in critical eigenstates using tensor network techniques and provide constraints on the theory of the many-body localization transition.
The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergod
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specificall
Many-body localized systems in which interactions and disorder come together defy the expectations of quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing nonequilibrium dynamics. What is less clear, h
We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin
Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly diso