ﻻ يوجد ملخص باللغة العربية
Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly disordered systems. Many-body localized (MBL) systems remain perfect insulators at non-zero temperature, which do not thermalize and therefore cannot be described using statistical mechanics. In this Colloquium we review recent theoretical and experimental advances in studies of MBL systems, focusing on the new perspective provided by entanglement and non-equilibrium experimental probes such as quantum quenches. Theoretically, MBL systems exhibit a new kind of robust integrability: an extensive set of quasi-local integrals of motion emerges, which provides an intuitive explanation of the breakdown of thermalization. A description based on quasi-local integrals of motion is used to predict dynamical properties of MBL systems, such as the spreading of quantum entanglement, the behavior of local observables, and the response to external dissipative processes. Furthermore, MBL systems can exhibit eigenstate transitions and quantum orders forbidden in thermodynamic equilibrium. We outline the current theoretical understanding of the quantum-to-classical transition between many-body localized and ergodic phases, and anomalous transport in the vicinity of that transition. Experimentally, synthetic quantum systems, which are well-isolated from an external thermal reservoir, provide natural platforms for realizing the MBL phase. We review recent experiments with ultracold atoms, trapped ions, superconducting qubits, and quantum materials, in which different signatures of many-body localization have been observed. We conclude by listing outstanding challenges and promising future research directions.
Many-body localization (MBL) has been widely investigated for both fermions and bosons, it is, however, much less explored for anyons. Here we numerically calculate several physical characteristics related to MBL of a one-dimensional disordered anyon
While many-body localization (MBL) is a well-established phenomenon in one-dimension, the fate of higher-dimensional strongly disordered systems in the infinite-time limit is a topic of current debate. The latest experiments as well as several recent
Lessons from Anderson localization highlight the importance of dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focussed on the phenomenon in one dimension using techniques of exact
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the contex
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spi