ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral tensor networks for many-body localization

165   0   0.0 ( 0 )
 نشر من قبل Anushya Chandran
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specifically, we will argue that the presence of a complete set of local integrals of motion in MBL implies an efficient representation of the entire spectrum of energy eigenstates with a single tensor network, a emph{spectral} tensor network. Our results are rigorous for a class of idealized systems related to MBL with integrals of motion of finite support. In one spatial dimension, the spectral tensor network allows for the efficient computation of expectation values of a large class of operators (including local operators and string operators) in individual energy eigenstates and in ensembles.



قيم البحث

اقرأ أيضاً

The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergod ic and integrable systems in simpler examples of quantum chaos. We consider the evolution of the spectral statistics across the MBLT, starting with mapping to a Brownian motion process that analytically relates the spectral properties to the statistics of matrix elements. We demonstrate that the flow from Wigner-Dyson to Poisson statistics is a two-stage process. First, fractal enhancement of matrix elements upon approaching the MBLT from the metallic side produces an effective power-law interaction between energy levels, and leads to a plasma model for level statistics. At the second stage, the gas of eigenvalues has local interaction and level statistics belongs to a semi-Poisson universality class. We verify our findings numerically on the XXZ spin chain. We provide a microscopic understanding of the level statistics across the MBLT and discuss implications for the transition that are strong constraints on possible theories.
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two m odels exhibiting many-body-localization: a disordered quantum spin chain and a phenomenological $l$-bit model based on the existence of local integrals of motion. We also identify a universal regime that is insensitive to the global density of states as well as spectral edge effects.
We propose a tensor network encoding the set of all eigenstates of a fully many-body localized system in one dimension. Our construction, conceptually based on the ansatz introduced in Phys. Rev. B 94, 041116(R) (2016), is built from two layers of un itary matrices which act on blocks of $ell$ contiguous sites. We argue this yields an exponential reduction in computational time and memory requirement as compared to all previous approaches for finding a representation of the complete eigenspectrum of large many-body localized systems with a given accuracy. Concretely, we optimize the unitaries by minimizing the magnitude of the commutator of the approximate integrals of motion and the Hamiltonian, which can be done in a local fashion. This further reduces the computational complexity of the tensor networks arising in the minimization process compared to previous work. We test the accuracy of our method by comparing the approximate energy spectrum to exact diagonalization results for the random field Heisenberg model on 16 sites. We find that the technique is highly accurate deep in the localized regime and maintains a surprising degree of accuracy in predicting certain local quantities even in the vicinity of the predicted dynamical phase transition. To demonstrate the power of our technique, we study a system of 72 sites and we are able to see clear signatures of the phase transition. Our work opens a new avenue to study properties of the many-body localization transition in large systems.
The exact nature of the many-body localization transition remains an open question. An aspect which has been posited in various studies is the emergence of scale invariance around this point, however the direct observation of this phenomenon is still absent. Here we achieve this by studying the logarithmic negativity and mutual information between disjoint blocks of varying size across the many-body localization transition. The two length scales, block sizes and the distance between them, provide a clear quantitative probe of scale invariance across different length scales. We find that at the transition point, the logarithmic negativity obeys a scale invariant exponential decay with respect to the ratio of block separation to size, whereas the mutual information obeys a polynomial decay. The observed scale invariance of the quantum correlations in a microscopic model opens the direction to probe the fractal structure in critical eigenstates using tensor network techniques and provide constraints on the theory of the many-body localization transition.
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some landmarks within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا