ﻻ يوجد ملخص باللغة العربية
We present a new understanding of the unstable ghost-like resonance which appears in theories such as quadratic gravity and Lee-Wick type theories. Quantum corrections make this resonance unstable, such that it does not appear in the asymptotic spectrum. We prove that these theories are unitary to all orders. Unitarity is satisfied by the inclusion of only cuts from stable states in the unitarity sum. This removes the need to consider this as a ghost state in the unitarity sum. However, we often use a narrow-width approximation where we do include cuts through unstable states, and ignore cuts through the stable decay products. If we do this with the unstable ghost resonance at one loop, we get the correct answer only by using a contour which was originally defined by Lee and Wick. The quantum effects also provide damping in both the Feynman and the retarded propagators, leading to stability under perturbations.
We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees of freedom arising in truncations of an effective action at a finite order in derivatives could be fictitious degrees of freedom. Their contributio
We show that starting from initial conditions with stable perturbations, evolution of a galileon scalar field results in the appearance of a ghost later on. To demonstrate this, we consider a theory with k-essence and cubic galileon Lagrangians on a
We give a simple discussion of ghosts, unitarity violation, negative norm states and quantum vs classical behavior in the simplest model with four derivative action - the Pais-Uhlenbeck oscillator. We also point out that the normalizable vacuum state
We review the fate of the Ostrogradsky ghost in higher-order theories. We start by recalling the original Ostrogradsky theorem and illustrate, in the context of classical mechanics, how higher-derivatives Lagrangians lead to unbounded Hamiltonians an
We study the perturbative stability of four settings that arise in String Theory, when dilaton potentials accompany the breaking of Supersymmetry, in the USp(32) and U(32) orientifold models, and also in the heterotic SO(16)xSO(16) model. The first t