ﻻ يوجد ملخص باللغة العربية
We study the perturbative stability of four settings that arise in String Theory, when dilaton potentials accompany the breaking of Supersymmetry, in the USp(32) and U(32) orientifold models, and also in the heterotic SO(16)xSO(16) model. The first two settings are a family of AdS3xS7 orientifold vacua and a family of AdS7xS3 heterotic vacua, supported by form fluxes, with small world-sheet and string-loop corrections within wide ranges of parameters. In both cases we find some unstable scalar perturbations, as a result of mixings induced by fluxes, confirming for the first class of vacua a previous result. However, in the second class they only affect the l=1 modes, so that a Z2 projection induced by an overall internal parity suffices to eliminate them, leading to perturbative stability. Moreover, the constant dilaton profiles of these vacua allow one to extend the analysis to generic potentials, thus exploring the possible effects of higher-order corrections, and we exhibit wide nearby regions of perturbative stability. The solutions in the third setting have nine-dimensional Poincare symmetry. They include regions with large world-sheet or string-loop corrections, but we show that these vacua have no perturbative instabilities. Finally, the last setting concerns cosmological solutions in ten dimensions where the climbing phenomenon takes place: they have bounded string-loop corrections but large world-sheet ones close to the initial singularity. We find that perturbations generally decay, but homogeneous tensor modes exhibit an interesting logarithmic growth that signals a breakdown of isotropy. If the Universe then proceeds to lower dimensions, milder potentials from other branes force all perturbations to remain bounded.
Positivity bounds coming from consistency of UV scattering amplitudes are in general insufficient to prove the weak gravity conjecture for theories beyond Einstein-Maxwell. Additional ingredients about the UV may be necessary to exclude those regions
We elaborate on integrable dynamical systems from scalar-gravity Lagrangians that include the leading dilaton tadpole potentials of broken supersymmetry. In the static Dudas-Mourad compactifications from ten to nine dimensions, which rest on these le
We present further no-go theorems for classical de Sitter vacua in Type II string theory, i.e., de Sitter constructions that do not invoke non-perturbative effects or explicit supersymmetry breaking localized sources. By analyzing the stability of th
We study the weak gravity conjecture in non-supersymmetric string theory setups. Precisely, those are type I string theory with supersymmetry broken `a la Scherk-Schwarz and open strings on D branes wrapped around magnetized tori in type II string th
We propose a new construction of the supergravity inflation as an UV completion of the Higgs-$R^2$ inflation. In the dual description of $R^2$-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in t