ﻻ يوجد ملخص باللغة العربية
We review the fate of the Ostrogradsky ghost in higher-order theories. We start by recalling the original Ostrogradsky theorem and illustrate, in the context of classical mechanics, how higher-derivatives Lagrangians lead to unbounded Hamiltonians and then lead to (classical and quantum) instabilities. Then, we extend the Ostrogradsky theorem to higher-derivatives theories of several dynamical variables and show the possibility to evade the Ostrogradsky instability when the Lagrangian is degenerate, still in the context of classical mechanics. In particular, we explain why higher-derivatives Lagrangians and/or higher-derivatives Euler-Lagrange equations do not necessarily lead to the propagation of an Ostrogradsky ghost. We also study some quantum aspects and illustrate how the Ostrogradsky instability shows up at the quantum level. Finally, we generalize our analysis to the case of higher order covariant theories where, as the Hamiltonian is vanishing and thus bounded, the question of Ostrogradsky instabilities is subtler.
The Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole is an influential solution of the low energy heterotic string theory. As it is well known, it presents a singular extremal limit. We construct a regular extension of the GMGHS extrema
We present a new understanding of the unstable ghost-like resonance which appears in theories such as quadratic gravity and Lee-Wick type theories. Quantum corrections make this resonance unstable, such that it does not appear in the asymptotic spect
We show that starting from initial conditions with stable perturbations, evolution of a galileon scalar field results in the appearance of a ghost later on. To demonstrate this, we consider a theory with k-essence and cubic galileon Lagrangians on a
We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees of freedom arising in truncations of an effective action at a finite order in derivatives could be fictitious degrees of freedom. Their contributio
We dimensionally reduce the spacetime action of bosonic string theory, and that of the bosonic sector of heterotic string theory after truncating the Yang-Mills gauge fields, on a $d$-dimensional torus including all higher-derivative corrections to f