ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Incremental Inference Update by Re-using Calculations from Belief Space Planning: A New Paradigm

95   0   0.0 ( 0 )
 نشر من قبل Elad Farhi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inference and decision making under uncertainty are key processes in every autonomous system and numerous robotic problems. In recent years, the similarities between inference and decision making triggered much work, from developing unified computational frameworks to pondering about the duality between the two. In spite of these efforts, inference and control, as well as inference and belief space planning (BSP) are still treated as two separate processes. In this paper we propose a paradigm shift, a novel approach which deviates from conventional Bayesian inference and utilizes the similarities between inference and BSP. We make the key observation that inference can be efficiently updated using predictions made during the decision making stage, even in light of inconsistent data association between the two. We developed a two staged process that implements our novel approach and updates inference using calculations from the precursory planning phase. Using autonomous navigation in an unknown environment along with iSAM2 efficient methodologies as a test case, we benchmarked our novel approach against standard Bayesian inference, both with synthetic and real-world data (KITTI dataset). Results indicate that not only our approach improves running time by at least a factor of two while providing the same estimation accuracy, but it also alleviates the computational burden of state dimensionality and loop closures.



قيم البحث

اقرأ أيضاً

Deciding whats next? is a fundamental problem in robotics and Artificial Intelligence. Under belief space planning (BSP), in a partially observable setting, it involves calculating the expected accumulated belief-dependent reward, where the expectati on is with respect to all future measurements. Since solving this general un-approximated problem quickly becomes intractable, state of the art approaches turn to approximations while still calculating planning sessions from scratch. In this work we propose a novel paradigm, Incremental BSP (iX-BSP), based on the key insight that calculations across planning sessions are similar in nature and can be appropriately re-used. We calculate the expectation incrementally by utilizing Multiple Importance Sampling techniques for selective re-sampling and re-use of measurement from previous planning sessions. The formulation of our approach considers general distributions and accounts for data association aspects. We demonstrate how iX-BSP could benefit existing approximations of the general problem, introducing iML-BSP, which re-uses calculations across planning sessions under the common Maximum Likelihood assumption. We evaluate both methods and demonstrate a substantial reduction in computation time while statistically preserving accuracy. The evaluation includes both simulation and real-world experiments considering autonomous vision-based navigation and SLAM. As a further contribution, we introduce to iX-BSP the non-integral wildfire approximation, allowing one to trade accuracy for computational performance by averting from updating re-used beliefs when they are close enough. We evaluate iX-BSP under wildfire demonstrating a substantial reduction in computation time while controlling the accuracy sacrifice. We also provide analytical and empirical bounds of the effect wildfire holds over the objective value.
165 - A. Darwiche , G. Provan 1997
We describe a new paradigm for implementing inference in belief networks, which consists of two steps: (1) compiling a belief network into an arithmetic expression called a Query DAG (Q-DAG); and (2) answering queries using a simple evaluation algori thm. Each node of a Q-DAG represents a numeric operation, a number, or a symbol for evidence. Each leaf node of a Q-DAG represents the answer to a network query, that is, the probability of some event of interest. It appears that Q-DAGs can be generated using any of the standard algorithms for exact inference in belief networks (we show how they can be generated using clustering and conditioning algorithms). The time and space complexity of a Q-DAG generation algorithm is no worse than the time complexity of the inference algorithm on which it is based. The complexity of a Q-DAG evaluation algorithm is linear in the size of the Q-DAG, and such inference amounts to a standard evaluation of the arithmetic expression it represents. The intended value of Q-DAGs is in reducing the software and hardware resources required to utilize belief networks in on-line, real-world applications. The proposed framework also facilitates the development of on-line inference on different software and hardware platforms due to the simplicity of the Q-DAG evaluation algorithm. Interestingly enough, Q-DAGs were found to serve other purposes: simple techniques for reducing Q-DAGs tend to subsume relatively complex optimization techniques for belief-network inference, such as network-pruning and computation-caching.
Fast covariance calculation is required both for SLAM (e.g.~in order to solve data association) and for evaluating the information-theoretic term for different candidate actions in belief space planning (BSP). In this paper we make two primary contri butions. First, we develop a novel general-purpose incremental covariance update technique, which efficiently recovers specific covariance entries after any change in the inference problem, such as introduction of new observations/variables or re-linearization of the state vector. Our approach is shown to recover them faster than other state-of-the-art methods. Second, we present a computationally efficient approach for BSP in high-dimensional state spaces, leveraging our incremental covariance update method. State of the art BSP approaches perform belief propagation for each candidate action and then evaluate an objective function that typically includes an information-theoretic term, such as entropy or information gain. Yet, candidate actions often have similar parts (e.g. common trajectory parts), which are however evaluated separately for each candidate. Moreover, calculating the information-theoretic term involves a costly determinant computation of the entire information (covariance) matrix which is O(n^3) with n being dimension of the state or costly Schur complement operations if only marginal posterior covariance of certain variables is of interest. Our approach, rAMDL-Tree, extends our previous BSP method rAMDL, by exploiting incremental covariance calculation and performing calculation re-use between common parts of non-myopic candidate actions, such that these parts are evaluated only once, in contrast to existing approaches.
In this work, we introduce a new approach for the efficient solution of autonomous decision and planning problems, with a special focus on decision making under uncertainty and belief space planning (BSP) in high-dimensional state spaces. Usually, to solve the decision problem, we identify the optimal action, according to some objective function. We claim that we can sometimes generate and solve an analogous yet simplified decision problem, which can be solved more efficiently; a wise simplification method can lead to the same action selection, or one for which the maximal loss can be guaranteed. Furthermore, such simplification is separated from the state inference, and does not compromise its accuracy, as the selected action would finally be applied on the original state. First, we present the concept for general decision problems, and provide a theoretical framework for a coherent formulation of the approach. We then practically apply these ideas to BSP problems, which can be simplified by considering a sparse approximation of the initial (Gaussian) belief. The scalable belief sparsification algorithm we provide is able to yield solutions which are guaranteed to be consistent with the original problem. We demonstrate the benefits of the approach in the solution of a highly realistic active-SLAM problem, and manage to significantly reduce computation time, with practically no loss in the quality of solution. This work is conceptual and fundamental, and holds numerous possible extensions.
A new belief space planning algorithm, called covariance steering Belief RoadMap (CS-BRM), is introduced, which is a multi-query algorithm for motion planning of dynamical systems under simultaneous motion and observation uncertainties. CS-BRM extend s the probabilistic roadmap (PRM) approach to belief spaces and is based on the recently developed theory of covariance steering (CS) that enables guaranteed satisfaction of terminal belief constraints in finite-time. The nodes in the CS-BRM are sampled in belief space and represent distributions of the system states. A covariance steering controller steers the system from one BRM node to another, thus acting as an edge controller of the corresponding belief graph that ensures belief constraint satisfaction. After the edge controller is computed, a specific edge cost is assigned to that edge. The CS-BRM algorithm allows the sampling of non-stationary belief nodes, and thus is able to explore the velocity space and find efficient motion plans. The performance of CS-BRM is evaluated and compared to a previous belief space planning method, demonstrating the benefits of the proposed approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا