ترغب بنشر مسار تعليمي؟ اضغط هنا

General Purpose Incremental Covariance Update and Efficient Belief Space Planning via Factor-Graph Propagation Action Tree

111   0   0.0 ( 0 )
 نشر من قبل Dmitry Kopitkov
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast covariance calculation is required both for SLAM (e.g.~in order to solve data association) and for evaluating the information-theoretic term for different candidate actions in belief space planning (BSP). In this paper we make two primary contributions. First, we develop a novel general-purpose incremental covariance update technique, which efficiently recovers specific covariance entries after any change in the inference problem, such as introduction of new observations/variables or re-linearization of the state vector. Our approach is shown to recover them faster than other state-of-the-art methods. Second, we present a computationally efficient approach for BSP in high-dimensional state spaces, leveraging our incremental covariance update method. State of the art BSP approaches perform belief propagation for each candidate action and then evaluate an objective function that typically includes an information-theoretic term, such as entropy or information gain. Yet, candidate actions often have similar parts (e.g. common trajectory parts), which are however evaluated separately for each candidate. Moreover, calculating the information-theoretic term involves a costly determinant computation of the entire information (covariance) matrix which is O(n^3) with n being dimension of the state or costly Schur complement operations if only marginal posterior covariance of certain variables is of interest. Our approach, rAMDL-Tree, extends our previous BSP method rAMDL, by exploiting incremental covariance calculation and performing calculation re-use between common parts of non-myopic candidate actions, such that these parts are evaluated only once, in contrast to existing approaches.



قيم البحث

اقرأ أيضاً

Deciding whats next? is a fundamental problem in robotics and Artificial Intelligence. Under belief space planning (BSP), in a partially observable setting, it involves calculating the expected accumulated belief-dependent reward, where the expectati on is with respect to all future measurements. Since solving this general un-approximated problem quickly becomes intractable, state of the art approaches turn to approximations while still calculating planning sessions from scratch. In this work we propose a novel paradigm, Incremental BSP (iX-BSP), based on the key insight that calculations across planning sessions are similar in nature and can be appropriately re-used. We calculate the expectation incrementally by utilizing Multiple Importance Sampling techniques for selective re-sampling and re-use of measurement from previous planning sessions. The formulation of our approach considers general distributions and accounts for data association aspects. We demonstrate how iX-BSP could benefit existing approximations of the general problem, introducing iML-BSP, which re-uses calculations across planning sessions under the common Maximum Likelihood assumption. We evaluate both methods and demonstrate a substantial reduction in computation time while statistically preserving accuracy. The evaluation includes both simulation and real-world experiments considering autonomous vision-based navigation and SLAM. As a further contribution, we introduce to iX-BSP the non-integral wildfire approximation, allowing one to trade accuracy for computational performance by averting from updating re-used beliefs when they are close enough. We evaluate iX-BSP under wildfire demonstrating a substantial reduction in computation time while controlling the accuracy sacrifice. We also provide analytical and empirical bounds of the effect wildfire holds over the objective value.
A new belief space planning algorithm, called covariance steering Belief RoadMap (CS-BRM), is introduced, which is a multi-query algorithm for motion planning of dynamical systems under simultaneous motion and observation uncertainties. CS-BRM extend s the probabilistic roadmap (PRM) approach to belief spaces and is based on the recently developed theory of covariance steering (CS) that enables guaranteed satisfaction of terminal belief constraints in finite-time. The nodes in the CS-BRM are sampled in belief space and represent distributions of the system states. A covariance steering controller steers the system from one BRM node to another, thus acting as an edge controller of the corresponding belief graph that ensures belief constraint satisfaction. After the edge controller is computed, a specific edge cost is assigned to that edge. The CS-BRM algorithm allows the sampling of non-stationary belief nodes, and thus is able to explore the velocity space and find efficient motion plans. The performance of CS-BRM is evaluated and compared to a previous belief space planning method, demonstrating the benefits of the proposed approach.
We present an anytime algorithm that generates a collision-free configuration-space path that closely follows a desired path in task space, according to the discrete Frechet distance. By leveraging tools from computational geometry, we approximate th e search space using a cross-product graph. We use a variant of Dijkstras graph-search algorithm to efficiently search for and iteratively improve the solution. We compare multiple proposed densification strategies and empirically show that our algorithm outperforms a set of state-of-the-art planners on a range of manipulation problems. Finally, we offer a proof sketch of the asymptotic optimality of our algorithm.
In automated manufacturing, robots must reliably assemble parts of various geometries and low tolerances. Ideally, they plan the required motions autonomously. This poses a substantial challenge due to high-dimensional state spaces and non-linear con tact-dynamics. Furthermore, object poses and model parameters, such as friction, are not exactly known and a source of uncertainty. The method proposed in this paper models the task of parts assembly as a belief space planning problem over an underlying impedance-controlled, compliant system. To solve this planning problem we introduce an asymptotically optimal belief space planner by extending an optimal, randomized, kinodynamic motion planner to non-deterministic domains. Under an expansiveness assumption we establish probabilistic completeness and asymptotic optimality. We validate our approach in thorough, simulated and real-world experiments of multiple assembly tasks. The experiments demonstrate our planners ability to reliably assemble objects, solely based on CAD models as input.
We develop a belief space planning (BSP) approach that advances the state of the art by incorporating reasoning about data association (DA) within planning, while considering additional sources of uncertainty. Existing BSP approaches typically assume data association is given and perfect, an assumption that can be harder to justify while operating, in the presence of localization uncertainty, in ambiguous and perceptually aliased environments. In contrast, our data association aware belief space planning (DA-BSP) approach explicitly reasons about DA within belief evolution, and as such can better accommodate these challenging real world scenarios. In particular, we show that due to perceptual aliasing, the posterior belief becomes a mixture of probability distribution functions, and design cost functions that measure the expected level of ambiguity and posterior uncertainty. Using these and standard costs (e.g.~control penalty, distance to goal) within the objective function, yields a general framework that reliably represents action impact, and in particular, capable of active disambiguation. Our approach is thus applicable to robust active perception and autonomous navigation in perceptually aliased environments. We demonstrate key aspects in basic and realistic simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا