ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance tests of boron-coated straw detectors with thermal and cold neutron beams

108   0   0.0 ( 0 )
 نشر من قبل Georg Ehlers
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prototypes of newly developed boron-coated straw (BCS) detectors have been tested in the thermal and cold neutron energy ranges. Their neutron detection performance has been benchmarked against the industry standard (detector tubes filled with 3He gas). The tests show that the BCS straws perform near their theoretical limit regarding the detection efficiency, which is adequate for scientific instruments in the cold neutron energy range. The BCS detectors perform on par with 3He tubes in terms of signal to noise and timing resolution, and superior regarding longitudinal spatial resolution.



قيم البحث

اقرأ أيضاً

281 - M. Klausz 2019
The last decade has witnessed the development of several alternative neutron detector technologies, as a consequence of upcoming neutron sources and upgrades, as well the world-wide shortage of $^3$He. One branch of development is the family of $^{10 }$B-based gaseous detectors. This work focuses on the boron coated straws (BCS) by Proportional Technologies Inc., a commercial solution designed for use in homeland security and neutron science. A detailed Geant4 simulation study of the BCS is presented, which investigates various aspects of the detector performance, e.g. efficiency, activation, absorption and the impact of scattering on the measured signal. The suitability of the BCS detector for Small Angle Neutron Scattering (SANS), direct chopper spectrometry and imaging is discussed.
The 3He-based neutron detectors are no longer the default solution for neutron scattering applications. Both the inability of fulfilling the requirements in performance, needed for the new instruments, and the shortage of 3He, drove a series of resea rch programs aiming to find new technologies for neutron detection. The characteristics of the new detector technologies have been extensively tested to prove their effectiveness with respect to the state-of-the-art technology. Among these, the background rejection capability is crucial to determine. The signal-to-background ratio is strongly related to the performance figure-of-merit for most instruments. These are designed to exploit the high flux expected from the new high intensity neutron sources. Therefore, an inadequate background rejection could significantly affect the measurements, leading to detector saturation and misleading events. This is of particular importance for the kind of techniques in which the signals are rather weak. For the first time, the sensitivity of 3He detectors to fast neutrons, up to En = 10 MeV, has been estimated. Two independent measurements are presented: a direct calculation based on a subtraction method used to disentangle the thermal and the fast neutron contribution, while a further evidence is calculated indirectly through a comparison with the recently published data from a 10B-based detector. Both investigations give a characterization on the order of magnitude for the sensitivity. A set of simulations is presented as well in order to support and to validate the results of the measurements. A sensitivity of 4x10-3 is observed from the data. This is two orders of magnitude higher than that previously observed in 10B-based detectors.
Precise measurement of straw axial coordinate (along the anode wire) with accuracy compatible with straw radial coordinate determination by drift time measurement and increase of straw detector rate capability by using straw cathode readout instead of anode readout are presented.
89 - E. Dian 2018
Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the backgrou nd scattering sources is required for effective suppression. The Multi-Grid thermal neutron detector is an Ar/CO$_{2}$ gas filled detector with a $^{10}$B$_{4}$C neutron converter coated on aluminium substrates. It is a large-area detector design that will equip inelastic neutron spectrometers at the European Spallation Source (ESS). To this end a parameterised Geant4 model is built for the Multi-Grid detector. This is the first time thermal neutron scattering background sources have been modelled in a detailed simulation of detector response. The model is validated via comparison with measured data of prototypes installed on the IN6 instrument at ILL and on the CNCS instrument at SNS. The effect of scattering originating in detector components is smaller than effects originating elsewhere.
60 - G. Mauri , F. Messi , K. Kanaki 2017
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirem ents in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternatives technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the gamma-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا