ﻻ يوجد ملخص باللغة العربية
Prototypes of newly developed boron-coated straw (BCS) detectors have been tested in the thermal and cold neutron energy ranges. Their neutron detection performance has been benchmarked against the industry standard (detector tubes filled with 3He gas). The tests show that the BCS straws perform near their theoretical limit regarding the detection efficiency, which is adequate for scientific instruments in the cold neutron energy range. The BCS detectors perform on par with 3He tubes in terms of signal to noise and timing resolution, and superior regarding longitudinal spatial resolution.
The last decade has witnessed the development of several alternative neutron detector technologies, as a consequence of upcoming neutron sources and upgrades, as well the world-wide shortage of $^3$He. One branch of development is the family of $^{10
The 3He-based neutron detectors are no longer the default solution for neutron scattering applications. Both the inability of fulfilling the requirements in performance, needed for the new instruments, and the shortage of 3He, drove a series of resea
Precise measurement of straw axial coordinate (along the anode wire) with accuracy compatible with straw radial coordinate determination by drift time measurement and increase of straw detector rate capability by using straw cathode readout instead of anode readout are presented.
Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the backgrou
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirem